
AFER+ SERPENT DFC RIJNDAEL RC6 SAFER+ LOKI97 DEAL E2 MAR

AGENTA SAFER+ SERPENT DFC RIJNDAEL RC6 LOKI97 DEAL E2 MA

WOFISH CAST-256 FROG HPC CRYPTON MAGENTA SAFER+ SERPEN

FC RIJNDAEL RC6 LOKI97 DEAL E2 MARS TWOFISH CAST-256 FROG

RYPTON MAGENTA SAFER+ SERPENT DFC RIJNDAEL RC6 LOKI97 DE

2 MARS TWOFISH CAST-256 FROG HPC CRYPTON MAGENTA SAFE

ERPENT DFC RIJNDAEL RC6 LOKI97 DEAL E2 MARS TWOFISH CAST

ROG HPC CRYPTON MAGENTA SAFER+ SERPENT DFC RIJNDAEL RC

OKI97 DEAL E2 MARS TWOFISH CAST-256 FROG HPC CRYPTON

MAGENTA SAFER+ SERPENT DFC RIJNDAEL RC6 LOKI97 DEAL E2 M

TWOFISH CAST-256 FROG HPC CRYPTON MAGENTA SAFER+ SERPE

DFC RIJNDAEL RC6 LOKI97 DEAL E2 MARS TWOFISH CAST-256 FRO

CRYPTON MAGENTA SAFER+ SERPENT DFC RIJNDAEL RC6 LOKI97 D

E2 MARS TWOFISH CAST-256 FROG HPC CRYPTON MAGENTA SAF

SERPENT DFC RIJNDAEL RC6 LOKI97 DEAL E2 MARS TWOFISH CAS

FROG HPC CRYPTON MAGENTA SAFER+ SERPENT DFC RIJNDAEL R

LOKI97 DEAL E2 MARS TWOFISH CAST-256 FROG HPC CRYPTON

MAGENTA SAFER+ SERPENT DFC RIJNDAEL RC6 LOKI97 DEAL E2

TWOFISH CAST-256 FROG HPC CRYPTON MAGENTA SAFER+ SERP

DFC RIJNDAEL RC6 LOKI97 DEAL E2 MARS TWOFISH CAST-256 FR

CRYPTON MAGENTA SAFER+ SERPENT DFC RIJNDAEL RC6 LOKI97

E2 MARS TWOFISH CAST-256 FROG HPC CRYPTON MAGENTA SA

SERPENT DFC RIJNDAEL RC6 LOKI97 DEAL E2 MARS TWOFISH CA

FROG HPC CRYPTON MAGENTA SAFER+ SERPENT DFC RIJNDAEL

LOKI97 DEAL E2 MARS TWOFISH CAST-256 FROG HPC CRYPTON

MAGENTA SAFER+ SERPENT DFC RIJNDAEL RC6 LOKI97 DEAL E2

TWOFISH CAST-256 FROG HPC CRYPTON MAGENTA SAFER+ SER

DFC RIJNDAEL RC6 LOKI97 DEAL E2 MARS TWOFISH CAST-256 F

Preface

The Third Advanced Encryption Standard Candidate Conference (AES3) is the last in a
series of three conferences that NIST has organized in its quest to develop the AES. It
has been a long road, since NIST first announced its intention in January 1997 to develop
a replacement standard for DES. Now, AES3 presents a wonderful opportunity for the
cryptographic community to gather and discuss Round 2 analysis and other issues that are
critical to the AES development effort. After Round 2 ends on May 15, 2000, NIST will
begin the process of selecting the algorithm(s) that will be included in a draft AES
Federal Information Processing Standard (FIPS). Therefore, NIST is holding AES3 to
better understand which of the finalist algorithms - MARS, RC6™, Rijndael, Serpent,
and Twofish - should be selected for the FIPS.

The papers to be presented at AES3 cover a wide range of issues, including cryptanalysis,
implementability in Field Programmable Gate Arrays (FPGAs), hardware simulations,
performance on various platforms, the role of future resiliency, and the possibility of
including single or multiple algorithms in the AES FIPS.

Please see the AES home page at http://www.nist.gov/aes for the remaining papers that
were proposed for AES3. Those papers - like the ones presented at AES3 - are
considered official Round 2 public comments.

All Round 2 official public comments are due by May 15, 2000, and they should be
submitted to AESRound2@nist.gov. This also includes any comments that interested
parties may have on the papers presented at both AES3 and FSE 2000 (e.g.,
comments on their validity, and their applicability to and impact on the AES
selection). NIST is eager to hear responses to these results and research.

The Program Committee members deserve a lot of credit for their hard work in
evaluating papers, preparing for the conference, and chairing the panel presentations:
Miles Smid (CygnaCom Solutions), Morris Dworkin (NIST), Tom Berson (Anagram
Laboratories), Dennis Branstad (consultant, TIS Labs), Craig Clapp (PictureTel), Susan
Langford (Certicom Corp.), Stefan Lucks (Universität Mannheim), Tim Moses (Entrust
Technologies), and David Solo (Citigroup).

http://www.nist.gov/aes/

Special thanks go to the NIST staff who have provided invaluable assistance in
evaluating documents and planning for AES3: Elaine Barker, Larry Bassham, Bill Burr,
Jim Dray, Morris Dworkin, Jim Nechvatal, Ed Roback, and Juan Soto. Much gratitude is
extended to the NIST staff responsible for the logistical side of AES3: Kathy Kilmer,
Lori Phillips, and Vickie Harris.

A special mention of thanks must be made for the cooperation and assistance provided by
Bruce Schneier, chair of the FSE 2000 Program Committee, and Beth Friedman of
Counterpane Labs, for their efforts to coordinate these two conferences.

Finally - and most importantly - NIST greatly appreciates the efforts of all the authors
who submitted papers for AES3. We have said this before, and we will say it again: the
ultimate success of the AES Development Effort depends heavily on the public
evaluation and analysis performed by the cryptographic community. Thank you for your
hard work.

Personally, I would like to thank Miles Smid for his tireless leadership role in the AES
development effort over the years, laying the solid foundation needed to support any
future success that may be enjoyed by the AES.

We hope that you benefit a great deal from having joined us in New York City.

Jim Foti
NIST

April 2000

Third Advanced Encryption Standard Candidate Conference:
AES3

Table of Contents

Abstracts of AES-related Papers from the Fast Software Encryption
Workshop (FSE) 2000... 9

Day 1 - Thursday, April 13, 2000

Session 1: "FPGA Evaluations"
An FPGA Implementation and Performance Evaluation of the
AES Block Cipher Candidate Algorithm Finalists 13

A.J. Elbirt, W. Yip, B. Chetwynd, C. Paar

A Comparison of the AES Candidates Amenability to FPGA
Implementation .. 28

Nicholas Weaver, John Wawrzynek

Comparison of the hardware performance of the AES candidates
using reconfigurable hardware.. 40

Kris Gaj, Pawel Chodowiec

Session 2: "Platform-Specific Evaluations"
AES Finalists on PA-RISC and IA-64:
Implementations & Performance .. 57

John Worley, Bill Worley, Tom Christian, Christopher Worley

A comparison of AES candidates on the Alpha 21264 75
Richard Weiss, Nathan Binkert

Performance Evaluation of AES Finalists on the High-End
Smart Card... 82

Fumihiko Sano, Masanobu Koike, Shinichi Kawamura,
Masue Shiba

How Well Are High-End DSPs Suited for the AES Algorithms?
AES Algorithms on the TMS320C6x DSP... 94

Thomas J. Wollinger, Min Wang, Jorge Guajardo, Christof Paar

Fast Implementations of AES Candidates ...106
Kazumaro Aoki, Helger Lipmaa

Session 3: "Surveys"
A Performance Comparison of the Five AES Finalists123

Bruce Schneier, Doug Whiting

Efficiency Testing of ANSI C Implementations of Round 2
Candidate Algorithms for the Advanced Encryption Standard136

Lawrence E. Bassham III

NIST Performance Analysis of the Final Round Java™
AES Candidates ..149

Jim Dray

Performance of the AES Candidate Algorithms in Java...............................161
Andreas Sterbenz, Peter Lipp

Session 4: "Cryptographic Analysis and Properties" (I)
MARS Attacks! Preliminary Cryptanalysis of Reduced-Round
MARS Variants...169

John Kelsey, Bruce Schneier

Impossible Differential on 8-Round MARS' Core.......................................186
Eli Biham, Vladimir Furman

Preliminary Cryptanalysis of Reduced-Round Serpent................................195
Tadayoshi Kohno, John Kelsey, Bruce Schneier

Day 2 - Friday, April 14, 2000

Session 5: "Cryptographic Analysis and Properties" (II)
Attacking Seven Rounds of Rijndael under 192-bit and
256-bit Keys..215

Stefan Lucks

A collision attack on 7 rounds of Rijndael...230
Henri Gilbert, Marine Minier

Relationships among Differential, Truncated Differential,
Impossible Differential Cryptanalyses against Word-Oriented
Block Ciphers like RIJNDAEL, E2 ...242

Makoto Sugita, Kazukuni Kobara, Kazuhiro Uehara,
Shuji Kubota, Hideki Imai

Session 6: "AES Issues" Panel
AES and Future Resiliency: More Thoughts And Questions257

Don Johnson

The Effects of Multiple Algorithms in the Advanced
Encryption Standard..269

Ian Harvey

Session 7: "ASIC Evaluations / Individual Algorithm Testing"
Hardware Evaluation of the AES Finalists ..279

Tetsuya Ichikawa, Tomomi Kasuya, Mitsuru Matsui

Hardware Performance Simulations of Round 2
Advanced Encryption Standard Algorithms...286

Bryan Weeks, Mark Bean, Tom Rozylowicz, Chris Ficke

High-Speed MARS Hardware...305
Akashi Satoh, Nobuyuki Ooba, Kohji Takano, Edward D'Avignon

Speeding up Serpent ...317
Dag Arne Osvik

Abstracts of AES-related Papers
from the

Fast Software Encryption Workshop (FSE) 2000

Bruce Schneier
Chair, FSE 2000 Program Committee

The Seventh Fast Software Encryption Workshop (FSE 2000) was held during the three days
immediately before this AES conference. Seven papers related to the AES finalists were
presented at FSE 2000, and the titles and abstracts for those papers are listed below.

The proceedings for FSE 2000 will be published by Springer-Verlag in their Lecture Notes in
Computer Science series. Copies of the pre-proceedings are available from the FSE secretariat.

Title: Improved Cryptanalysis of Rijndael
Authors: Niels Ferguson, John Kelsey, Bruce Schneier, Mike Stay, David Wagner, and Doug
Whiting
Abstract: We improve the best attack on 6-round Rijndael from complexity 272 to 242. We also
present the first known attacks on 7- and 8-round Rijndael. Finally, we discuss the key schedule
of Rijndael and describe a related-key technique that can break 9-round Rijndael with 256-bit
keys.

Title: On the Pseudorandomness of AES Finalists -- RC6, Serpent, MARS and Twofish
Authors: Tetsu Iwata and Kaoru Kurosawa
Abstract: The aim of this paper is to compare the security of AES finalists in an idealized model
like Luby and Rackoff. We mainly prove that a five round idealized RC6 and a three round
idealized Serpent are super-pseudorandom permutations. We then show a comparison about this
kind of pseudorandomness for four AES finalists, RC6, Serpent, MARS and Twofish.

Title: Correlations in RC6
Authors: Lars Knudsen and Willi Meier
Abstract: In this paper the block cipher RC6 is analysed. RC6 is submitted as a candidate for the
Advanced Encryption Standard, and is one of five finalists. It has 128-bit blocks and supports
keys of 128, 192 and 256 bits, and is an iterated 20-round block cipher. Here it is shown that
versions of RC6 with 128-bit blocks can be distinguished from a random permutation with up to
15 rounds; for some weak keys up to 17 rounds. Moreover, with an increased effort key-recovery
attacks can be mounted on RC6 with up to 15 rounds faster than an exhaustive search for the
key.

http://www.counterpane.com/fse.html

Title: Securing the AES Finalists Against Power Analysis Attacks
Author: Thomas Messerges
Abstract: Techniques to protect software implementations of the AES candidate algorithms
from power analysis attacks are investigated. New countermeasures that employ random masks
are developed and the performance characteristics of these countermeasures are analyzed.
Implementations in a 32-bit, ARM-based smartcard are considered.

Title: Efficient Methods for Generating MARS-like S-boxes
Authors: L. Burnett, G. Carter, E. Dawson, and W. Millan
Abstract: One of the five AES finalists, MARS, makes use of a 9x32 s-box with very specific
combinatorial, differential and linear correlation properties. The s-box used in the cipher was
selected as the best from a large sample of pseudo randomly generated tables, in a process that
took IBM about a week to compute. This paper provides a faster and more effective alternative
generation method using heuristic techniques to produce 9x32 s-boxes with cryptographic
properties that are clearly superior to those of the MARS s-box, and typically take less than two
hours to produce on a single PC.

Title: A Statistical Attack on RC6
Authors: Henri Gilbert, Helena Handschuh, Antoine Joux, and Serge Vaudenay
Abstract: This paper details the attack on RC6 which was announced in a report published in the
proceedings of the second AES candidate conference (March 1999). Based on an observation on
the RC6 statistics, we show how to distinguish RC6 from a random permutation and to recover
the secret extended key for a fair number of rounds.

Title: Amplified Boomerang Attacks Against Reduced-Round MARS and Serpent
Authors: John Kelsey, Tadayoshi Kohno, and Bruce Schneier
Abstract: We introduce a new kind of attack based on Wagner's boomerang and inside-out
attacks. We first describe the new attack in terms of the original boomerang attack, and then
demonstrate its use on reduced-round variants of the MARS core and of Serpent. Our attack
breaks eleven rounds of the Mars core with 265 chosen plaintexts, 269 memory, and 2229 partial
decryptions. Our attack breaks eight rounds of Serpent with 2114 chosen plaintexts, 2119 memory,
and 2179 partial decryptions.

Session 1:

"FPGA Evaluations"

An FPGA Implementation and Performance Evaluation of the AES

Block Cipher Candidate Algorithm Finalists �

AJ Elbirt1, W Yip1, B Chetwynd2, C Paar1

Electrical and Computer Engineering Department

Worcester Polytechnic Institute

100 Institute Road, Worcester, MA 01609, USA

1 Email: faelbirt, waihyip, christofg@ece.wpi.edu
2 Email: spunge@alum.wpi.edu

Abstract

The technical analysis used in determining which of the Advanced Encryption Standard candidates
will be selected as the Advanced Encryption Algorithm includes e�ciency testing of both hardware and
software implementations of candidate algorithms. Reprogrammable devices such as Field Programmable
Gate Arrays (FPGAs) are highly attractive options for hardware implementations of encryption algo-
rithms as they provide cryptographic algorithm agility, physical security, and potentially much higher
performance than software solutions. This contribution investigates the signi�cance of FPGA implemen-
tations of four of the Advanced Encryption Standard candidate algorithm �nalists. Multiple architectural
implementation options are explored for each algorithm. A strong focus is placed on high throughput
implementations, which are required to support security for current and future high bandwidth appli-
cations. The implementations of each algorithm will be compared in an e�ort to determine the most
suitable candidate for hardware implementation within commercially available FPGAs.

Keywords: cryptography, algorithm-agility, FPGA, block cipher, VHDL

1 Introduction

The National Institute of Standards and Technology (NIST) has initiated a process to develop a Federal Infor-
mation Processing Standard (FIPS) for the Advanced Encryption Standard (AES), specifying an Advanced
Encryption Algorithm to replace the Data Encryption Standard (DES) which expired in 1998 [1]. NIST has
solicited candidate algorithms for inclusion in AES, resulting in �fteen o�cial candidate algorithms of which
�ve have been selected as �nalists. Unlike DES, which was designed speci�cally for hardware implementa-
tions, one of the design criteria for AES candidate algorithms is that they can be e�ciently implemented in
both hardware and software. Thus, NIST has announced that both hardware and software performance mea-
surements will be included in their e�ciency testing. So far, however, virtually all performance comparisons
have been restricted to software implementations on various platforms [2].

The advantages of a software implementation include ease of use, ease of upgrade, portability, and

exibility. However, a software implementation o�ers only limited physical security, especially with respect
to key storage [3] [4]. Conversely, cryptographic algorithms (and their associated keys) that are implemented
in hardware are, by nature, more physically secure as they cannot easily be read or modi�ed by an outside

�This research was supported in part through NSF CAREER award #CCR-9733246.

1

attacker [4]. The downside of traditional (ASIC) hardware implementation are the lack of
exibility with
respect to algorithm and parameter switch. A promising alternative for implementation block cipher are
recon�gurable hardware devices such as Field Programmable Gate Arrays (FPGAs). FPGAs are hardware
devices whose function is not �xed and which can be programmed in-system. The potential advantages of
encryption algorithms implemented in FPGAs include:

Algorithm Agility This term refers to the switching of cryptographic algorithms during operation. The
majority of modern security protocols, such as SSL or IPsec, allow for multiple encryption algo-
rithms. The encryption algorithm is negotiated on a per-session basis; e.g., IPsec allows among others
DES, 3DES, Blow�sh, CAST, IDEA, RC4 and RC6 as algorithms, and future extensions are possible.
Whereas algorithm agility is costly with traditional hardware, FPGAs can be reprogrammed on-the-
y.

Algorithm Upload It is perceivable that �elded devices are upgraded with a new encryption algorithm
which did not exist (or was not standardized!) at design time. In particular, it is very attractive
for numerous security products to be upgraded for use of AES once the selection process is over.
Assuming there is some kind of (temporary) connection to a network such as the Internet, FPGA-
equipped encryption devices can upload the new con�guration code.

Algorithm Modi�cation There are applications which require modi�cation of a standardized algorithm,
e.g., by using proprietary S-boxes or permutations. Such modi�cations are easily made with recon�g-
urable hardware. Similarly, a standardized algorithm can be swapped with a proprietary one. Also,
modes of operation can be easily changed.

Architecture E�ciency In certain cases, a hardware architecture can be much more more e�cient if it is
designed for a speci�c set of parameters; e.g., constant multiplication (of integers or in Galois �elds)
is far more e�cient than general multiplication. With FPGAs it is possible to design and optimize an
architecture for a speci�c parameter set.

Throughput Although typically slower than an ASIC implementations, FPGA implementations have the
potential of running substantially faster then software implementations.

Cost E�ciency The time and costs for developing an FPGA implementation of a given algorithm are
much lower than for an ASIC implementation. (However, for high-volume applications, ASIC solutions
usually become the more cost-e�cient choice.)

Note that algorithm agility remains an open research issue in regards to speed, physical security, and
the cost associated with current high-end FPGA devices. However, we believe that cost is not a long-
term limiting factor, as will be discussed in Section 3.3. For these reasons, this paper describes a thorough
comparison the AES �nalist algorithms RC6, Rijndael, Serpent, and Two�sh with respect to implementation
on state-of-the-art FPGAs. One aspect that seems to be especially relevant is the investigation of achievable
encryption rates for FPGA-based implementations. We demonstrate that FPGA solutions encrypt at rates
in the Gigabit range for all four algorithms investigated, which is at least one order of magnitude faster than
most reported software implementations [5].

What follows is an investigation of the AES �nalists to determine the nature of their underlying com-
ponents. The characterization of the algorithms' components will lead to a discussion of the hardware
architectures best suited for implementation of the AES �nalists. A performance metric to measure the
hardware cost for the throughput achieved by each algorithm's implementations will be developed and a
target FPGA will be chosen so as to yield implementations that are optimized for high-throughput opera-
tion within the commercially available device. Finally, multiple architecture options of the algorithms within
the targeted FPGA will be discussed and the overall performance of the implementations will be evaluated
versus typical software implementations.

2

2 Previous Work

As opposed to custom hardware or software implementations, little work exists in the area of block cipher
implementations within existing FPGAs. DES, the most common block cipher implementation targeted to
FPGAs, has been shown to operate at speeds of up to 400 Mbit/s [6]. We believe that this performance can
be greatly enhanced using today's technology. These speeds are signi�cantly faster than the best software
implementations of DES [7] [8] [9], which typically have throughputs below 100 Mbit/s, although a 137
Mbit/s implementation has been reported as well [7]. This performance di�erential is an expected result of
DES having been designed in the 1970s with hardware implementations in mind.

Other block ciphers have been implemented in FPGAs with varying degrees of success. A typical exam-
ple is the IDEA block cipher which has been implemented at speeds ranging from 2.8 Mbit/s [10] to 528
Mbit/s [11]. Note that while the 528 Mbit/s throughput was achieved in a fully pipelined architecture, the
implementation required four Xilinx XC4000 FPGAs.

Some FPGA implementation throughputs for the AES candidates have been shown to be far slower
than their software counterparts. Hardware throughputs of about 12 Mbit/s [12] [13] have been achieved for
CAST-256. However, software implementations have resulted in throughputs of 37.8 Mbit/s for CAST-256 on
a 200 MHz PentiumPro PC [5], a factor of three faster than FPGA implementations. When scaled to a more
current 600 MHz PentiumPro PC, it is expected that the same software implementation would outperform
FPGA implementations by an even larger factor. While an FPGA implementation of RC6 achieved data
rates of 37.8 Mbit/s [13], our �ndings indicate that considerably higher data rates are achievable.

When examining the AES �nalists, it is important to note that they do not necessarily exhibit similar
behavior to DES when comparing hardware and software implementations. One reason for this is that the
AES �nalists have been designed with e�cient software implementations in mind. Additionally, software
implementations may be executed on processors operating at frequencies as high as 800 MHz while typical
implementations that target FPGAs reach a maximum clock frequency of 50 MHz.

3 Methodology

3.1 Design Methodology

There are two basic hardware design methodologies currently available: language based (high level) design
and schematic based (low level) design. Language based design relies upon synthesis tools to implement
the desired hardware. While synthesis tools continue to improve, they rarely achieve the most optimized
implementation in terms of both area and speed when compared to a schematic implementation. As a
result, synthesized designs tend to be (slightly) larger and slower than their schematic based counterparts.
Additionally, implementation results can greatly vary depending on the synthesis tool as well as the design
being synthesized, leading to potentially increased variances in the synthesized results when comparing
synthesis tool outputs. This situation is not entirely di�erent from a software implementation of an algorithm
in a high-level language such as C, which is also dependent on coding style and compiler quality. As shown in
[14], schematic based design methodologies are no longer feasible for supporting the increase in architectural
complexity evidenced by modern FPGAs. As a result, a language based design methodology was chosen as
the implementation form for the AES �nalists with VHDL being the speci�c language chosen.

3.2 Implementations | General Considerations

Each AES �nalist was implemented in VHDL using a bottom-up design and test methodology. The same
hardware interface was used for each of the implementations. In an e�ort to achieve the maximum e�ciency
possible, note that key scheduling and decryption were not implemented for each of the AES �nalists. Because
FPGAs may be recon�gured in-system, the FPGA may be con�gured for key scheduling and then later

3

recon�gured for either encryption or decryption. This option is a major advantage of FPGAs implementations
over classical ASIC implementations. Round keys for encryption are loaded from the external key bus and
are stored in internal registers and all keys must be loaded before encryption may begin. Key loading is
disabled until encryption is completed. Each implementation was simulated for functional correctness using
the test vectors provided in the AES submission package [15] [16] [17] [18]. After verifying the functionality of
the implementations, the VHDL code was synthesized, placed and routed, and re-simulated with annotated
timing using the same test vectors, verifying that the implementations were successful.

3.3 Selection of a Target FPGA

When examining the AES �nalists for hardware implementation within an FPGA, a number of key aspects
emerge. First, it is obvious that the implementation will require a large amount of I/O pins to fully support
the 128-bit data stream at high speeds where bus multiplexing is not an option. It is desirable to decouple
the 128-bit input and output data streams to allow for a fully pipelined architecture. Since the round keys
cannot change during the encryption process, they may be loaded via a separate key input bus prior to the
start of encryption. Additionally, to implement a fully pipelined architecture requires 128-bit wide pipeline
stages, resulting in the need for a register-rich architecture to achieve a fast, synchronous implementation.
Moreover, it is desirable to have as many register bits as possible per each of the FPGA's con�gurable units to
allow for a regular layout of design elements as well as to minimize the routing required between con�gurable
units. Finally, it is critical that fast carry-chaining be provided between the FPGA's con�gurable units to
maximize the performance of AES �nalists that utilize arithmetic operations [13] [12].

In addition to architectural requirements, scalability and cost must be considered. We believe that the
chosen FPGA should be the best chip available, capable of providing the largest amount of hardware resources
as well as being highly
exible so as to yield optimal performance. Unfortunately, the cost associated with
current high-end FPGAs is relatively high (several hundred US dollars per device). However, it is important
to note that the FPGA market has historically evolved at an extremely rapid pace, with larger and faster
devices being released to industry at a constant rate. This evolution has resulted in FPGA cost-curves that
decrease sharply over relatively short periods of time. Hence, selecting a high-end device provides the closest
model for the typical FPGA that will be available over the expected lifespan of AES.

Based on the aforementioned considerations, the Xilinx Virtex XCV1000BG560-4 FPGA was chosen as
the target device. The XCV1000 has 128K bits of embedded RAM divided among thirty-two RAM blocks
that are separate from the main body of the FPGA. The 560-pin ball grid array package provides 512 usable
I/O pins. The XCV1000 is comprised of a 64 � 96 array of look-up-table based Con�gurable Logic Blocks
(CLBs), each of which acts as a 4-bit element comprised of two 2-bit slices for a total of 12288 CLB slices
[19]. This type of con�guration results in a highly
exible architecture that will accommodate the round
functions' use of wide operand functions. Note that the XCV1000 also appears to be a good representative
for a modern FPGA and that devices from other vendors are not fundamentally di�erent. It is thus hoped
that our results carry over, within limits, to other devices.

3.4 Design Tools

FPGA Express by Synopsys, Inc. and Synplify by Synplicity, Inc. were used to synthesize the VHDL imple-
mentations of the AES �nalists. As this study places a strong focus on high throughput implementations,
the synthesis tools were set to optimize for speed. As will be discussed in Section 6, the resultant implemen-
tations exhibit the best possible throughputs with the associated cost being an increase in the area required
in the FPGA for each of the implementations. Similarly, if the synthesis tools were set to optimize for area,
the resultant implementations would exhibit reduced area requirements at the cost of decreased throughput.

XACTstep 2.1i by Xilinx, Inc. was used to place and route the synthesized implementations. For the
sub-pipelined architectures, a 40 MHz timing constraint was used in both the synthesis and place-and-
route processes as it resulted in signi�cantly higher system clock frequencies. However, the 40 MHz timing

4

constraint was found to have little a�ect on the other architecture types, resulting in nearly identical system
clock frequencies to those achieved without the timing constraint.

Finally, Speedwave by Viewlogic Systems, Inc. and Active-HDLTM by ALDEC, Inc. were used to perform
behavioral and timing simulations for the implementations of the AES �nalists. The simulations veri�ed
both the functionality and the ability to operate at the designated clock frequencies for the implementations.

4 Architecture Options and the AES Finalists

Before attempting to implement the AES �nalists in hardware, it is important to understand the nature of
each algorithm as well as the hardware architectures most suited for their implementation. What follows
is an investigation into the key components of the AES �nalists. Based on this breakdown, a discussion is
presented on the hardware architectures most suited for implementation of the AES �nalists.

4.1 Core Operations of the AES Finalist Algorithms

Algorithm XOR Mod 232 Mod 232 Fixed Variable Mod 232 GF(28) LUT
Add Subtract Shift Rotate Multiply Multiply

MARS � � � � � � �

RC6 � � � � �

Rijndael � � � �

Serpent � � �

Two�sh � � � � �

Table 1: AES �nalists core operations [20]

Modern FPGAs have a structure comprised of a two-dimensional array of con�gurable function units
interconnected via horizontal and vertical routing channels. Con�gurable function units are typically com-
prised of look-up-tables and
ip-
ops. Look-up-tables may be con�gured as either combinational logic or
memory elements. Additionally, many modern FPGAs provide variable-size SRAM blocks that may be used
as either memory elements or look-up-tables [21].

In terms of complexity, the operations detailed in Table 1 that require the most hardware resources as well
as computation time are the modulo 232 multiplication and the variable rotation operations [20]. Implement-
ing wide multipliers in hardware is an inherently di�cult task that requires signi�cant hardware resources.
Additionally, algorithms that employ large variable rotations require a moderate amount of multiplexing
hardware if carefully designed (see Section 5.1 for further discussion). S-Boxes may be implemented in either
combinatorial logic or embedded RAM| the advantages of each of these options are discussed in Section 4.2.
Fast operations such as bit-wise XOR, modulo 232 addition and subtraction, and �xed value shifting are con-
structed from simple hardware elements. Additionally, the Galois �eld multiplications required in Rijndael
and Two�sh can also be implemented very e�ciently in hardware as they are multiplications by a constant.
Galois �eld constant multiplication requires far less resources than general multiplications [22].

Based on our evaluation of the AES �nalists, the MARS algorithm appeared to be the most resource
intensive based on its use of large S-Boxes, and modulo 232 multiplication. As a result, it was conjectured
that the MARS algorithm would exhibit lesser performance when compared to the other AES �nalists. Due
to this evaluation and a lack of development resources, the MARS algorithm was omitted from this study.

4.2 Hardware Architectures

The AES �nalists are all comprised of a basic looping structure (some form of either Feistel or substitution-
permutation network) whereby data is iteratively passed through a round function. Based on this looping

5

structure, the following architecture options were investigated so as to yield optimized implementations:

� Iterative Looping

� Loop Unrolling

� Partial Pipelining

� Partial Pipelining with Sub-Pipelining

Iterative looping over a cipher's round structure is an e�ective method for minimizing the hardware
required when implementing an iterative architecture. When only one round is implemented, an n-round
cipher must iterate n times to perform an encryption. This approach has a low register-to-register delay but
a requires a large number of clock cycles to perform an encryption. This approach also minimizes in general
the hardware required for round function implementation but can be costly with respect to the hardware
required for round key and S-Box multiplexing. Iterative looping is a subset of loop unrolling in that only
one round is unrolled whereas a loop unrolling architecture allows for the unrolling of multiple rounds, up to
the total number of rounds required by the cipher. As opposed to an iterative looping architecture, a loop
unrolling architecture where all n rounds are unrolled and implemented as a single combinatorial logic block
maximizes the hardware required for round function implementation while the hardware required for round
key and S-Box multiplexing is completely eliminated. However, while this approach minimizes the number
of clock cycles required to perform an encryption, it maximizes the worst case register-to-register delay for
the system, resulting in an extremely slow system clock.

A partially pipelined architecture o�ers the advantage of high throughput rates by increasing the number
of blocks of data that are being simultaneously operated upon. This is achieved by replicating the round
function hardware and registering the intermediate data between rounds. Moreover, in the case of a full-
length pipeline (a speci�c form of a partial pipeline), the system will output a 128-bit block of ciphertext
at each clock cycle once the latency of the pipeline has been met. However, an architecture of this form
requires signi�cantly more hardware resources as compared to a loop unrolling architecture. In a partially
pipelined architecture, each round is implemented as the pipeline's atomic unit and are separated by the
registers that form the actual pipeline. However, many of the AES �nalists cannot be implemented using
a full-length pipeline due to the large size of their associated round function and S-Boxes, both of which
must be replicated n times for an n-round cipher. As such, these algorithms must be implemented as partial
pipelines. Additionally, a pipelined architecture can be fully exploited only in modes of operations which
do not require feedback of the encrypted data, such as Electronic Code-Book or Counter Mode [3, Section
9.9]. When operating in feedback modes such as Ciphertext Feedback Mode, the ciphertext of one block
must be available before the next block can be encrypted. As a result, multiple blocks of plaintext cannot
be encrypted in a pipelined fashion when operating in feedback modes. For the remainder of our discussion,
feedback mode will be abbreviated as FB and non-feedback mode will be abbreviated as NFB.

Sub-pipelining a (partially) pipelined architecture is advantageous when the round function of the
pipelined architecture is complex, resulting in a large delay between pipeline stages. By adding sub-pipeline
stages, the atomic function of each pipeline stage is sub-divided into smaller functional blocks. This results
in a decrease in the pipeline's delay between stages. However, each sub-division of the atomic function
increases the number of clock cycles required to perform an encryption by a factor equal to the number of
sub-divisions. At the same time, the number of blocks of data that may be operated upon in NFB mode
is increased by a factor equal to the number of sub-divisions. Therefore, for this technique to be e�ective,
the worst case delay between stages will be decreased by a factor of m where m is the number of added
sub-divisions. However, if the atomic function of the partially pipelined architecture has a small stage de-
lay, sub-dividing the stage will achieve no signi�cant decrease in the worst case stage delay. In this case,
sub-pipelining would result in no signi�cant increase in the system's clock frequency but would increase the
logic resources and clock cycles required to perform an encryption, resulting in reduced throughput.

6

Many FPGAs provide embedded RAM which may be used to replace the round key and S-Box multi-
plexing hardware. By storing the keys within the RAM blocks, the appropriate key may be addressed based
on the current round. However, due to the limited number of RAM blocks, as well as their restricted bit
width, this methodology is not feasible for architectures with many pipeline stages or unrolled loops. Those
architectures require more RAM blocks than are typically available. Additionally, the switching time for the
RAM is more than a factor of three longer than that of a standard CLB slice element, resulting in the RAM
element having a lesser speed-up e�ect on the overall implementation. Therefore, the use of embedded RAM
is not considered for this study to maintain consistency between architectural implementations.

5 Architectural Implementation Analysis

For each of the AES �nalists, the four architecture options described in Section 4.2 were implemented in
VHDL using a bottom-up design and test methodology. The same hardware interface was used for each of the
implementations. Round keys are stored in internal registers and all keys must be loaded before encryption
may begin. Key loading is disabled until encryption is completed. These implementations yielded a great
deal of knowledge in regards to the FPGA suitability of each AES �nalist. What follows is a discussion of
the knowledge gained regarding each algorithm when implemented using the four architecture types.

5.1 Architectural Implementation Analysis | RC6

When implementing the RC6 algorithm, it was �rst determined that the RC6 modulo 232 multiplication was
the dominant element of the round function in terms of required logic resources. Each RC6 round requires
two copies of the modulo 232 multiplier. However, it was found that the RC6 round function does not
require a general modulo 232 multiplier. The RC6 multipliers implement the function A(2A + 1) which may
be implemented as 2A2 + A. Therefore, the multiplication operation was replaced with an array squarer
with summed partial products, requiring fewer hardware resources and resulting in a faster implementation.
The remaining components of the RC6 round function | �xed and variable shifting, bit-wise XOR, and
modulo 232 addition | were found to be simple in structure, resulting in these elements of the round
function requiring few hardware resources. While variable shifting operations have the potential to require
considerable hardware resources, the 5-bit variable shifting required by the RC6 round function required
few hardware resources. Instead of implementing a 32-to-1 multiplexor for each of the thirty-two rotation
output bits (controlled by the �ve shifting bits), a �ve-level multiplexing approach was used. The variable
rotation is broken into �ve stages, each of which is controlled by one of the �ve shifting bits. For each
rotation output bit of a given stage, a 2-to-1 multiplexor controlled by the stage's shifting bit is used. This
implementation requires a total of 160 2-to-1 multiplexors as opposed to the thirty-two 32-to-1 multiplexors
required for a one-stage implementation. However, using 2-to-1 multiplexors to form the �ve-stage barrel-
shifter results in an overall implementation that is smaller and faster when compared to the one-stage
barrel-shifter implementation as described in [18, Section 3.4]. Finally, it was found that the synthesis tools
could not minimize the overall size of a RC6 round su�ciently to allow for a fully unrolled or fully pipelined
implementation of the entire twenty rounds of the algorithm within the target FPGA.

As discussed in Section 4.2, implementing a single round of the RC6 algorithm provides the greatest
area-optimized solution. Further loop unrolling provided only minor throughput increases as the decrease in
the number of cycles per encrypted block was o�set by the rapidly decreasing system clock frequency. 2-stage
partial pipelining was found to yield the highest throughput when operating in FB mode, outperforming the
single round iterative looping implementation by achieving a signi�cantly higher system clock frequency.

When operating in NFB mode, a partially pipelined architecture with two additional sub-pipeline stages
was found to o�er the advantage of extremely high throughput rates once the latency of the pipeline was
met, with the 10-stage partial pipeline implementation displaying the best throughput and results. Based
on the delay analysis of the partial pipeline implementations, it was determined that nearly two thirds of

7

the round function's associated delay was attributed to the modulo 232 multiplier. Therefore, two additional
pipeline sub-stages were implemented so as to subdivide the multiplier into smaller blocks, resulting in a
total of three pipeline stages per round function. As a result, an increase by a factor of more than 2.5 was
seen in the system's clock frequency, resulting in a similar increase in throughput when operating in NFB
mode. Further sub-pipelining was not implemented as this would require sub-dividing the adders used to
sum the partial products (a non-trivial task) to balance the delay between sub-pipeline stages.

5.2 Architectural Implementation Analysis | Rijndael

When implementing the Rijndael algorithm, it was �rst determined that the Rijndael S-Boxes were the
dominant element of the round function in terms of required logic resources. Each Rijndael round requires
sixteen copies of the S-Boxes, each of which is an 8-bit to 8-bit look-up-table, requiring signi�cant hardware
resources. However, the remaining components of the Rijndael round function | byte swapping, constant
Galois �eld multiplication, and key addition | were found to be simple in structure, resulting in these
elements of the round function requiring few hardware resources. Additionally, it was found that the synthesis
tools could not minimize the overall size of a Rijndael round su�ciently to allow for a fully unrolled or fully
pipelined implementation of the entire ten rounds of the algorithm within the target FPGA.

Surprisingly, a one round partially pipelined implementation with one sub-pipeline stage provided the
most area-optimized solution. As compared to a one-stage implementation with no sub-pipelining, the
addition of a sub-pipeline stage a�orded the synthesis tool greater
exibility in its optimizations, resulting in
a more area e�cient implementation. While 2-stage loop unrolling was found to yield the highest throughput
when operating in FB mode, the measured throughput was within 10% of the single stage implementation.
Due to the probabilistic nature of the place-and-route algorithms, one can expect a variance in performance
based on di�erences in the starting point of the process. When performing this process multiple times, known
as multi-pass place-and-route, it is likely that the single round implementation would achieve a throughput
similar to that of the 2-stage loop unrolled implementation.

When operating in NFB mode, partial pipelining was found to o�er the advantage of extremely high
throughput rates once the pipeline latency was met, with the 5-stage partial pipeline implementation display-
ing the best throughput results. While Rijndael cannot be implemented using a fully pipelined architecture
due to the large size of the round function, signi�cant throughput increases were seen as compared to the
loop unrolling architecture.

Sub-pipelining of the partially pipelined architectures was implemented by inserting a pipeline sub-stage
within the Rijndael round function. Based on the delay analysis of the partial pipeline implementations,
it was determined that nearly half of the round function's associated delay was attributed to the S-Box
substitutions. Therefore, the additional pipeline sub-stage was implemented so as to separate the S-Boxes
from the rest of the round function. As a result, an increase by a factor of nearly 2 was seen in the system's
clock frequency, resulting in a similar increase in throughput when operating in NFB mode. Further sub-
pipelining was not implemented as this would require sub-dividing the S-Boxes (a non-trivial task) to balance
the delay between sub-pipeline stages.

5.3 Architectural Implementation Analysis | Serpent

When implementing the Serpent algorithm, it was �rst determined that since the Serpent S-Boxes are
relatively small (4-bit to 4-bit), it is possible to implement them using combinational logic as opposed to
memory elements. Additionally, the S-Boxes map extremely well to the Xilinx CLB slice, which is comprised
of 4-bit look-up-tables, allowing one S-Box to be implemented in a total of two CLB slices, yielding a compact
implementation which minimizes routing between CLB slices. Finally, the components of the Serpent round
function | key masking, S-Box substitution, and linear transformation | were found to be simple in
structure, resulting in the round function requiring few hardware resources.

8

Implementing a single round of the Serpent algorithm provides the greatest area-optimized solution.
However, a signi�cant performance improvement was achieved by performing 8-round loop unrolling, remov-
ing the need for S-Box multiplexing hardware as one copy of each possible S-Box grouping is now included
within one of the eight rounds. This amount of loop unrolling achieved a signi�cant performance increase
with little increase in hardware resources due to the compact nature of the Serpent round function. As ex-
pected, unrolling thirty-two rounds of the Serpent algorithm resulted in a lesser performance when compared
to the eight round implementation. Implementing the thirty-two rounds of the algorithm in combinatorial
logic severely hampered the overall clock frequency of the system, overriding the performance increase caused
by the removal of the multiplexing hardware required to switch between keys.

When operating in NFB mode, a full-length pipelined architecture was found to o�er the advantage of
extremely high throughput rates once the latency of the pipeline was met, outperforming smaller partially
pipelined implementations. In the fully pipelined architecture, all of the elements of a given round function
are implemented as combinatorial logic. Other AES �nalists cannot be implemented using a fully pipelined
architecture due to the larger round functions. However, due to the small size of the Serpent S-Boxes (4-bit
look-up-tables), the cost of S-Box replication is minimal in terms of the required hardware.

Finally, sub-pipelining of the partially pipelined architectures was determined to yield no throughput
increase. Because the round function components are all simple in structure, there is little performance to
be gained by subdividing them with registers in an attempt to reduce the delay between stages. As a result,
the increase in the system's clock frequency would not outweigh the increase in the number of clock cycles
required to perform an encryption, resulting in a performance degradation.

5.4 Architectural Implementation Analysis | Two�sh

When implementing the Two�sh algorithm, it was �rst determined that the synthesis tools were unable
to minimize the Two�sh S-Boxes to the extent of other AES �nalist algorithms due to the S-Boxes being
key-dependent. Therefore, the overall size of a Two�sh round was too large to allow for a fully unrolled
or fully pipelined implementation of the algorithm within the target FPGA. Moreover, the key-dependent
S-Boxes were found to require nearly half of the delay associated with the Two�sh round function.

As expected, implementing a single round of the Two�sh algorithm provides the greatest area-optimized
solution in terms of total CLB slices required for the implementation. Additional loop unrolling provided
minor throughput increases as the decrease in the number of cycles per encrypted block was o�set by the
rapidly decreasing system clock frequency. However, single stage partial pipelining with one sub-pipeline
stage was found to yield the best throughput and when operating in feedback mode. With a small increases
in the required hardware resources, the sub-pipelined architecture was able to reach a signi�cantly faster
system clock frequency as compared to the loop unrolling and partial pipeline implementations.

When operating in NFB mode, a partially pipelined architecture was found to o�er the advantage of
extremely high throughput rates once the latency of the pipeline was met, with the 8-stage partial pipeline
implementation displaying the best throughput results. While Two�sh cannot be implemented using a fully
pipelined architecture due to the large size of the round function, signi�cant throughput increases were seen
as compared to the loop unrolling architecture.

Finally, sub-pipelining of the partially pipelined architectures was implemented by inserting a pipeline
sub-stage within the Two�sh round function. Based on the delay analysis of the partial pipeline implemen-
tations, it was determined that nearly half of the round function's associated delay was attributed to the
S-Box substitutions. Therefore, the additional pipeline sub-stage was implemented so as to separate the
S-Boxes from the rest of the round function. As a result, an increase by a factor of nearly 2 was seen in
the system's clock frequency, resulting in a similar increase in throughput when operating in NFB mode.
Further sub-pipelining was not implemented as this would require sub-dividing the S-Boxes (a non-trivial
task) to balance the delay between sub-pipeline stages.

9

6 Performance Evaluation

Tables 2 and 3 detail the throughput measurements for the implementations of the three architecture types
for each of the AES �nalists for both NFB and FB mode. The architecture types | loop unrolling (LU),
full or partial pipelining (PP), and partial pipelining with sub-pipelining (SP) | are listed along with the
number of stages and (if necessary) sub-pipeline stages in the associated implementation; e.g., LU-4 implies
a loop unrolling architecture with four rounds, while SP-2-1 implies a partially pipelined architecture with
two stages and one sub-pipeline stage per pipeline stage. As a result, the SP-2-1 architecture implements
two rounds of the given cipher with a total of two stages per round. Throughput is calculated as:

Throughput := (128 Bits * Clock Frequency)=(Cycles Per Encrypted Block)

Note that the implementation of a one stage partial pipeline architecture, an iterative looping architecture,
and a one round loop unrolled architecture are all equivalent and are therefore not listed separately. Also
note that the computed throughput for implementations that employ any form of hardware pipelining (as
discussed in Section 4) are made assuming that the pipeline latency has been met.

The number of CLBs required as well as the maximum operating frequency for each implementation
was obtained from the Xilinx report �les. Note that the Xilinx tools assume the absolute worst possible
operating conditions | highest possible operating temperature, lowest possible supply voltage, and worst-
case fabrication tolerance for the speed grade of the FPGA [23]. As a result, it is common for actual
implementations to achieve slightly better performance results than those speci�ed in the Xilinx report �les.

While this study focuses on high throughput implementations, the hardware resources required to achieve
this throughput is also a critical parameter. No established metric exists to measure the hardware resource
costs associated with the measured throughput of an FPGA implementation. Two area measurements of
FPGA utilization are readily apparent | logic gates and CLB slices. It is important to note that the logic
gate count does not yield a true measure of actual FPGA utilization. Hardware resources within CLB slices
may not be fully utilized by the place-and-route software so as to relieve routing congestion. This results in
an increase in the number of CLB slices without a corresponding increase in logic gates. To achieve a more
accurate measure of chip utilization, CLB slice count was chosen as the most reliable area measurement.
Therefore, to measure the hardware resource cost associated with an implementation's resultant throughput,
the Throughput Per Slice (TPS) metric is used. We de�ned TPS as:

TPS := (Encryption Rate)=(# CLB Slices Used)

Therefore, the optimal implementation will display the highest throughput and have the largest TPS. Note
that the TPS metric behaves inversely to the classical time-area (TA) product.

When comparing implementations using the TPS and throughput metrics, it is required that the archi-
tectures are implemented on the same FPGA. Di�erent FPGAs within the same family yield di�erent timing
results as a function of available logic and routing resources, both of which change based on the die size
of the FPGA. Additionally, it is impossible to legitimately compare FPGAs from separate families as each
family of FPGAs has a unique architecture which greatly a�ects the measured throughput and TPS. Finally,
it is critical to note that throughput (and therefore TPS) may not scale linearly based on the number of
rounds implemented for the three architecture types detailed in Section 4.1. As a result, it is imperative that
multiple implementations be examined for each architecture type, varying the round count to determine the
optimal number of rounds per implementation.

10

Clock Frequency Cycles per Throughput
Algorithm Architecture Slices (MHz) Block (Mbit/s)

RC6 LU-1 2638 13.8 20 88.5
RC6 LU-2 3069 7.3 10 94.0
RC6 LU-4 4070 3.7 5 94.8
RC6 LU-5 4476 2.9 4 92.2
RC6 LU-10 6406 1.5 2 97.4
RC6 PP-2 3189 19.8 10 253.0
RC6 PP-4 4411 12.3 5 315.5
RC6 PP-5 4848 12.1 4 386.7
RC6 PP-10 7412 13.3 2 848.1
RC6 SP-1-1 2967 26.2 20 167.6
RC6 SP-2-1 3709 26.4 10 337.8
RC6 SP-4-1 5229 24.6 5 629.8
RC6 SP-5-1 5842 25.8 4 825.2
RC6 SP-10-1 8999 26.6 2 1704.6
RC6 SP-1-2 3134 39.1 20 250.0
RC6 SP-2-2 4062 38.9 10 497.4
RC6 SP-4-2 5908 31.3 5 802.3
RC6 SP-5-2 6415 33.3 4 1067.0
RC6 SP-10-2 10856 37.5 2 2397.9

Rijndael LU-1 3528 25.3 11 294.2
Rijndael LU-2 5302 14.1 6 300.1
Rijndael LU-5 10286 5.6 3 237.4
Rijndael PP-2 5281 23.5 5.5 545.9
Rijndael PP-5 10533 20.0 2.2 1165.8
Rijndael SP-1-1 3061 40.4 10.5 491.9
Rijndael SP-2-1 4871 38.9 5.25 949.1
Rijndael SP-5-1 10992 31.8 2.1 1937.9

Serpent LU-1 5511 15.5 32 61.9
Serpent LU-8 7964 13.9 4 444.2
Serpent LU-32 8103 2.4 1 312.3
Serpent PP-8 6849 30.4 4 971.8
Serpent PP-32 9004 38.0 1 4860.2

Two�sh LU-1 2666 13.0 16 104.2
Two�sh LU-2 3392 7.1 8 113.6
Two�sh LU-4 4665 3.3 4 106.8
Two�sh LU-8 6990 1.7 2 108.1
Two�sh PP-2 3519 11.9 8 190.4
Two�sh PP-4 5044 11.5 4 369.3
Two�sh PP-8 7817 10.8 2 689.5
Two�sh SP-1-1 3053 29.9 16 239.2
Two�sh SP-2-1 3869 28.6 8 457.1
Two�sh SP-4-1 5870 27.3 4 872.3
Two�sh SP-8-1 9345 24.8 2 1585.3

Table 2: AES �nalist performance evaluation | non-feedback mode

11

Clock Frequency Cycles per Throughput
Algorithm Architecture Slices (MHz) Block (Mbit/s)

RC6 LU-1 2638 13.8 20 88.5
RC6 LU-2 3069 7.3 10 94.0
RC6 LU-4 4070 3.7 5 94.8
RC6 LU-5 4476 2.9 4 92.2
RC6 LU-10 6406 1.5 2 97.4
RC6 PP-2 3189 19.8 20 126.5
RC6 PP-4 4411 12.3 20 78.9
RC6 PP-5 4848 12.1 20 77.3
RC6 PP-10 7412 13.3 20 84.8
RC6 SP-1-1 2967 26.2 40 83.8
RC6 SP-2-1 3709 26.4 40 84.5
RC6 SP-4-1 5229 24.6 40 78.7
RC6 SP-5-1 5842 25.8 40 82.5
RC6 SP-10-1 8999 26.6 40 85.2
RC6 SP-1-2 3134 39.1 60 83.3
RC6 SP-2-2 4062 38.9 60 82.9
RC6 SP-4-2 5908 31.3 60 66.9
RC6 SP-5-2 6415 33.3 60 71.1
RC6 SP-10-2 10856 37.5 60 79.9

Rijndael LU-1 3528 25.3 11 294.2
Rijndael LU-2 5302 14.1 6 300.1
Rijndael LU-5 10286 5.6 3 237.4
Rijndael PP-2 5281 23.5 11 273.0
Rijndael PP-5 10533 20.0 11 233.2
Rijndael SP-1-1 3061 40.4 21 246.0
Rijndael SP-2-1 4871 38.9 21 237.3
Rijndael SP-5-1 10992 31.8 21 193.8

Serpent LU-1 5511 15.5 32 61.9
Serpent LU-8 7964 13.9 4 444.2
Serpent LU-32 8103 2.4 1 312.3
Serpent PP-8 6849 30.4 32 121.5
Serpent PP-32 9004 38.0 32 151.9

Two�sh LU-1 2666 13.0 16 104.2
Two�sh LU-2 3392 7.1 8 113.6
Two�sh LU-4 4665 3.3 4 106.8
Two�sh LU-8 6990 1.7 2 108.1
Two�sh PP-2 3519 11.9 16 95.2
Two�sh PP-4 5044 11.5 16 92.3
Two�sh PP-8 7817 10.8 16 86.2
Two�sh SP-1-1 3053 29.9 32 119.6
Two�sh SP-2-1 3869 28.6 32 114.3
Two�sh SP-4-1 5870 27.3 32 109.0
Two�sh SP-8-1 9345 24.8 32 99.1

Table 3: AES �nalist performance evaluation | feedback mode

12

Alg. Arch. Throughput (Gbit/s) Slices TPS
RC6 SP-10-2 2.40 10856 220881

Rijndael SP-5-1 1.94 10992 176297
Serpent PP-32 4.86 9004 539778
Two�sh SP-8-1 1.59 9345 169639

Table 4: AES �nalist performance evaluation | non-feedback mode speed-optimized implementations

0

2

4

6

RC6 Rijndael Serpent Twofish

G
 b

it/
s

Figure 1: Best throughput | non-feedback mode

Alg. Arch. Throughput (Mbit/s) Slices TPS
RC6 PP-2 126.5 3189 39662

Rijndael LU-2 300.1 5302 56605
Serpent LU-8 444.2 7964 55771
Two�sh SP-1-1 119.6 3053 39169

Table 5: AES �nalist performance evaluation | feedback mode speed-optimized implementations

0
100
200
300
400
500

RC6 Rijndael Serpent Twofish

M
 b

it/
s

Figure 2: Best throughput | feedback mode

Tables 4 and 5 detail the optimal implementations of the AES �nalists in both FB and NFB modes.
Additionally, TPS is also shown for each of the implementations. It is critical to note that for the purposes
of this study, the optimal implementation for an AES �nalist is de�ned to yield the highest throughput. As
previously discussed, the synthesis tools were set to optimize for speed to guarantee that the highest throughputs
would be achieved for each implementation. However, should an optimal implementation be de�ned based on
either TPS or area, the implementation results shown in Tables 2 and 3 (and, as a result, those shown in
tables 4 and 5 as well) are no longer representative of the best possible implementations for the architectures
studied. To achieve a true representation that de�nes optimality based on either TPS or area, synthesis must
be performed with the tools set to optimize for area. While an area-e�ciency analysis of the AES �nalists
warrants investigation, it is beyond the scope of this study.

Based on the data shown in Tables 4 and 5, the Serpent algorithm clearly outperforms the other AES
�nalists in both modes of operation. As compared to its nearest competitor, Serpent exhibits a throughput
increase of a factor 2.2 in NFB mode and a factor 1.5 in FB mode. Interestingly, RC6, Rijndael, and Two�sh

13

all exhibit similar performance results in NFB mode. However, Rijndael exhibits signi�cantly improved
performance in FB mode as compared to RC6 and Two�sh, although it is still 50% slower than Serpent.

One of the main �ndings of our investigation, namely that Serpent appears to be especially well suited
for an FPGA implementation from a performance perspective, seems especially interesting considering that
Serpent is clearly not the fastest algorithm with respect to most software comparisons [5]. Another major
result of our study is that all four algorithms considered easily achieve Gigabit encryption rates with standard
commercially available FPGAs. The algorithms are at least one order of magnitude faster than the best
reported software realizations. These speed-ups are essentially achieved by parallelization (pipelining and
sub-pipelining) of the loop structure and by wide operand processing (e.g., processing of 128 bits in once
clock cycle), both of which are not feasible on current processors. We would like to stress that the pipelined
architectures cannot be used to their maximum ability for modes of operation which require feedback (CFB,
OFB, etc.) However we believe that for many applications which require high encryption rates, non-feedback
modes (or modi�ed feedback modes such as interleaved CFB [3, Section 9.12]) will be the modes of choice.
Note that the Counter Mode grew out of the need for high speed encryption of ATM networks which required
parallelization of the encryption algorithm.

7 Conclusions

The importance of the Advanced Encryption Standard and the signi�cance of high throughput implemen-
tations of the AES �nalists has been examined. A design methodology was established which in turn led to
the architectural requirements for a target FPGA. The core operations of the AES �nalists were identi�ed
and multiple architecture options were discussed. The implementation of each architecture option for each
of the AES �nalists was analyzed to determine their suitability for hardware implementation. Based on the
implementation results, the best speed-optimized implementations were identi�ed for each AES �nalist in
both non-feedback and feedback modes. Upon comparison, it was determined that the Serpent algorithm
yielded the best performance in both modes, where best performance was de�ned strictly as the highest
throughput. The Serpent algorithm outperforms its nearest competitor by a factor of 2.2 in non-feedback
mode and by a factor of 1.5 in feedback mode.

8 Acknowledgement

We would like to thank Pawel Chodowiec and Kris Gaj from George Mason University for their helpful
discussion and the VHDL code modules that were provided to assist in the implementation of some of
the AES �nalists. We would also like to thank Alan Martello from the University of Pittsburgh for his
public-domain VHDL code module that was used in implementation of the AES �nalists.

References

[1] D. Stinson, Cryptography, Theory and Practice. Boca Raton, FL: CRC Press, 1995.

[2] National Institute of Standards and Technology (NIST), Second Advanced Encryption Standard (AES)
Conference, (Rome, Italy), March 1999.

[3] B. Schneier, Applied Cryptography. John Wiley & Sons Inc., 2nd ed., 1995.

[4] R. Doud, \Hardware Crypto Solutions Boost VPN," EETimes, pp. 57{64, April 1999.

[5] B. Gladman, \Implementation Experience with AES Candidate Algorithms," in Proceedings: Second
AES Candidate Conference (AES2), (Rome, Italy), March 1999.

14

[6] J. Kaps and C. Paar, \Fast DES Implementations for FPGAs and its Application to a Universal Key-
Search Machine," in 5th Annual Workshop on Selected Areas in Cryptography (SAC '98) (S. Tavares and
H. Meijer, eds.), vol. LNCS 1556, (Queen's University, Kingston, Ontario, Canada), Springer-Verlag,
August 1998.

[7] E. Biham, \A Fast New DES Implementation in Software," in Fast Software Encryption. 4th Interna-
tional Workshop, FSE'97 Proceedings, (Berlin), pp. 260{272, Springer-Verlag, 1997. Lecture Notes in
Computer Science Volume 1267.

[8] A. P�tzmann and R. Assman, \More E�cient Software Implementations of (Generalized) DES," Com-
puters & Security, vol. 12, no. 5, pp. 477{500, 1993.

[9] J. Hughes, \Implementation of NBS/DES Encryption Algorithm in Software," in Colloquium on Tech-
niques and Implications of Digital Privacy and Authentication Systems, 1981.

[10] D. Runje and M. Kovac, \Universal Strong Encryption FPGA Core Implementation," in Proceedings of
Design, Automation, and Test in Europe, (Paris, France), pp. 923{924, February 1998.

[11] O. Mencer, M. Morf, and M. Flynn, \Hardware Software Tri-Design of Encryption for Mobile Commu-
nication Units," in Proceedings of International Conference on Acoustics, Speech, and Signal Processing,
(Seattle, WA), May 1998.

[12] A. Elbirt, \An FPGA Implementation and Performance Evaluation of the CAST-256 Block Cipher,"
Technical Report, Cryptography and Information Security Group, Electrical and Computer Engineering
Department, Worcester Polytechnic Institute, Worcester, MA, May 1999.

[13] M. Riaz and H. Heys, \The FPGA Implementation of RC6 and CAST-256 Encryption Algorithms," in
accepted for CCECE'99, (Edmonton, Alberta, Canada), 1999.

[14] C. Phillips and K. Hodor, \Breaking the 10k FPGA Barrier Calls For an ASIC-Like Design Style,"
Integrated System Design, 1996.

[15] R. Anderson, E. Biham, and L. Knudsen, \Serpent: A Proposal for the Advanced Encryption Standard,"
in First Advanced Encryption Standard (AES) Conference, (Ventura, CA), 1998.

[16] B. Schneier, J. Kelsey, D. Whiting, D. Wagner, and C. Hall, \Two�sh: A 128-Bit Block Cipher," in
First Advanced Encryption Standard (AES) Conference, (Ventura, CA), 1998.

[17] J. Daemen and V. Rijmen, \AES Proposal: Rijndael," in First Advanced Encryption Standard (AES)
Conference, (Ventura, CA), 1998.

[18] R. Rivest, M. Robshaw, R. Sidney, and Y. Yin, \The RC6TM Block Cipher," in First Advanced En-
cryption Standard (AES) Conference, (Ventura, CA), 1998.

[19] Xilinx Inc., Virtex 2.5V Field Programmable Gate Arrays, 1998.

[20] B. Chetwynd, \Universal Block Cipher Module: Towards a Generalized Architectures for Block Ci-
phers," Master's thesis, Worcester Polytechnic Institute, Worcester, MA, November 1999.

[21] S. Brown and J. Rose, \FPGA and CPLD Architectures: A Tutorial," in IEEE Design & Test of
Computers, vol. 13, no. 2, pp. 42{57, 1996.

[22] C. Paar, \Optimized Arithmetic for Reed-Solomon Encoders," in 1997 IEEE International Symposium
on Information Theory, (Ulm, Germany), p. 250, June 29 { July 4 1997.

[23] P. Alfke, \Xilinx M1 Timing Parameters." electronic mail personal correspondance, December 1999.

15

� �������	��

����������������������� �!���	"#�$"%�&���'�(�)�*�+�,�.-%�0/��1�324���
576�8 � 9:�*��/��+�*�+�;�<�=�������

>@?BADCFEHGJILK�M�N3IPO
NPQPRFSHEHC<TUMVIPWXQZYP[\TFNP]
^ T\W_N3IPO
NPQPR `�EHC<T�W,aHb%APKdcfegNPQh]
NPGiNP[jckNml\ngo

p�IqQrArC�sPt�RguHvHvLv

w�x
y1z1{�|~}rz
���~�����:�P�1�������;���0�~�D�f�:�0�J���1���;���g�P�L�<�g�D�L�\� �J�~�P�����i�F�D�1�J�:�1�r�1�L�0�~�@�g�<���P�J�3�L�0�J�������
�f�r�J���d�~�1�,�J�;�J�~���<�����F P�Z�J���h���:�0�J�~�g���J�;���d�¡�J�0¢£�¤�g���J�&�f¥.�r�f�1¥.�1�r�¦���¤�f�r�d�1§%¨����<��©h�1�1�L�J�d�
�r��ª3�1�J���r�+�1�f«h�Z�¤�f�J�d¥.��¥���¬��J�1�J�D�f�<�f�_�¤�f«h�r���P�����r���D��ªm�1�J�1�~�1�1���f�_�1�h�J�­�0�~�;�P�1�¤¢£�h�J¥����d�1���g�~�1�
�f¥��D�f�1¥��1�r�J�1�¡�h�X®
¯�°+�+�F�h�<�f�;�J¥��1���
�1�~�J�J�h¥��~�1©h�f�1�1�1§F���r�f�g�d�r���d¥.���r�+�r�f�J�1�d�J�J���+�J�~��©h���¤±
�f�Z�d�²���f«Z�h�¤�f�J�~¥.�³¢£�J�h¥��J�~���P�1�J�J�P�1���¤�f©h�.��¢F���:�h�J�1�r�¤�´�1�F®
¯\°+�µ�f¥��D�f�1¥��1�r�J�1�1§²�F� �B�d�:�0���F���d�
�g�<���P�J�%�0�J���1¶r�1�����f�1�r�����0�~�D�f�:�0�J���&¢i�J�h¥·���:�0�J�~�g���J���~�1�¤�f«Z�d�1�1¸ �=©h�f�1�g�P�0�f�r�1���g�D���f�¹�;���g�
�f�g�:�0�J�¤�f�1�r�´�0�¤�f¬%�1¶r�P�1�~�¤�f©h�����d���f�d�¦º����f�1�r�1§

» ¼­½_¾g¿gÀ¡ÁÃÂ%Ä�¾+ÅZÀ#½

Æ�Ç3È_É�ÊHËLÌrÍ\Î�ÏgÐ,Ñ0ÌrËLÒPÓiÒ3ÌDÔ¦È�ÕhÖ
×�Î�Ø&Ð
Ù�Ú0ÛÜÖ3Ø�Ý�ÞqÙ�Þ0ÛÜÖ3Ø³Ó ß1ËLÒ3ÌDÈ�ÍJÙ à0Û¦ÖLÐPÈ0á¦âHÈ�ËPÔZÙäã0ÛÜÖ3ÌDËLÒ�Æ�å+ærÊLÕ�Ç�Ù�ç0Û¦ÖLÌrá�È
ÌrÍäÍ'ÒmÈ�Õ¦Óäè~ËqÈZÒéÔ�æêá�ë3Ë�È1ì%Ñ�Ó´È0Ë:Ô�ÍäíêædË�Ì,å�ÓiÒPÈXî~ÌDá¦ÓäÈ�ÔJíïærð=ÇLÌDá�ÒPå�Ìrá�È%ÌrËHÒïÕ¦ærð¤ÔJå²ÌDá¦È~ñïò�ærå+È�î~È�áhÖ<Ô¦Ç3È
Ñ�ÌDËLÒPÓiÒ3ÌrÔ�È�Õ�î~ÌDá¦í�ÓäËêÔ�Ç3È�Óäá�Ìró¡È0ËLÌrô3ÓäÍäÓäÔJí¡Ô�æ¡ÇLÌDá�ÒPå�Ìrá�ÈXÓ´ó@â3ÍäÈ�ó¡È0Ë:Ô1ÌrÔ�Ó´ærËqÕZñ&õJËêÔ�Ç3ÓäÕ�âLÌrâHÈ�á.å+ÈXÈ�Õ¦Ô�Ófö
ó%ÌDÔ¦È+Ô¦Ç3È&á¦È�ÍiÌDÔ¦Óäî~È=Ñ1ædÕ¦Ô�ÌrËLÒ;âHÈ�áÜð÷æ~á�ó%ÌrËHÑ1È+ð÷æ~á�î~Ìrá¦Óäædë3Õ<âLædÕ¦Õ¦Óäô3ÍäÈ&Ó´ó@â3ÍäÈ�óXÈ�ËPÔ�ÌDÔ¦Óäæ~ËqÕ�ærð
Ô¦ÇqÈ�ÒPÓùø
È�á¦È�ËPÔ
Î�Ï�Ð,ÌrÍäè~ædá¦ÓäÔ¦Çqó¡ÕZñ\Î=ÍäÔ�Ç3æ~ë3èdÇ�Ë3æ%ÌdÑ1Ô¦ëLÌDÍ�Óäó¡âqÍ´È0ó¡È�ËPÔ�ÌDÔ¦ÓäærË3Õ'ÌDá¦È�á�ÈZÌrÍäÓäú�ÈZÒûÖLÓäÔ�ÓäÕ�Õ¦Ô�á�ÌDÓ´èdÇPÔJð÷ædá¦å�Ìrá�Ò@Ô�æ
È�Õ�Ô¦Óäó%ÌDÔ¦È=Ô�Ç3È_Ñ1ædÕ¦Ô�æDð­î~ÌDá¦Óäæ~ëqÕ'âHæ~Õ�Õ¦Óäô3ÍäÈ.á¦ÈZÌDÍ´ÓäúZÌDÔ¦Óäæ~ËqÕ'æDð­Ô�Ç3È.Î�ÏgÐ�Ñ�ÌDËLÒPÓiÒ3ÌDÔ¦È�Õhñ

ü ý)þ,ÿ��.¿����.¾+ÅZÀX½�ÿ)ÀX½ ¾���� Ä��;½%ÁÃÅZÁ	�.¾
�.ÿ

Æ�Ç3È&ð÷ædÍ´Íäærå�ÓäË3è�ædô3Õ¦È0á¦î~ÌrÔ�Óäæ~Ë3Õ�å�ÓäÍäÍLôHÈgß1ë3Õ�Ô¦ÓùÊLÈZÒ�Ô�Ç3á¦ædë3è~Çqæ~ë3Ô�Ô�Ç3È.âLÌrâHÈ�áZñ
×�Î�Ø&Ð@Ó´Õ+Ë3ædÔ=Ì�îdÈ�á¦í@Õ¦ë3ÓäÔ�ÌDô3ÍäÈ�Ñ1Óäâ3ÇqÈ�á�ð÷ædá²Ì�ÇLÌDá�ÒPå�Ìrá�È�Óäó@â3ÍäÈ�ó¡È�ËPÔ1ÌrÔ¦ÓäædË�ñHÆ�Ç3È.Ô¦Ç3á�È�È�Õ¦È0âLÌrá1ÌrÔ¦È

á¦ædë3ËLÒ�ÔJíPâHÈ�ÕZÖHÔ�Ç3È�ë3Õ�È_æDð­ôHæ~Ô�Ç,ÌrË,È��3âHÈ�Ë3Õ�Ó´îdÈ_óXëqÍ´Ô�Óäâ3ÍäÓfÈ�á�ÌrËLÒ@ËPë3ó@È�á¦ædë3Õ�ÍiÌrá¦èdÈ�ÐdöBôHæ
�,á¦È1ð¤È�á¦È�ËHÑ1È�ÕZÖ
ÌrËHÒ%Ì;Ñ1ædó¡â3ÍäÓiÑ�ÌrÔ�ÈZÒXÕ�ë3ô��dÈ�í¡èdÈ�Ë3È�á1ÌrÔ¦ÓäædË�ÖLÌDÍ´Í�Ñ�æ~óXô3ÓäË3È�Ô�æXó%Ì��dÈ�ÓäÔ=Ì�âHæPæ~á=Ñ�ÌDËLÒPÓiÒ3ÌrÔ�È~ñ
Ø�Ý�Þ3ÖhÔ¦Çqæ~ë3èdÇ�ÓäÔFëqÕ¦È�ÕgÑ1ædó¡âLÌDá�ÌrÔ�Óäî~È�Íäí=È��mâHÈ�Ë3Õ�Óäî~È�æ~âHÈ�á1ÌrÔ¦ÓäædË3ÕZÖrÓäÕ<Ì�á¦ÈhÌrÕ¦ædËLÌrôqÍ´È�Ñ�ÌDËLÒPÓiÒ3ÌrÔ�È'ëqË3ÍäÈ�Õ¦Õ

Õ¦ëqô��~È�í�è~È�Ë3È0á�ÌrÔ�Óäæ~Ë;Ó´Õ\Óäó¡âHæ~á¦Ô1ÌrËPÔZñHÆ�Ç3È=ÌDô3ÓäÍäÓ´ÔJí�Ô�æ.á¦ÈZÌDÕ¦æ~ËHÌrô3Íäí.á¦ÈZÒmëLÑ1È�Ô¦ÇqÈ�ÇLÌrá1ÒPå²ÌDá¦È+á¦È��dë3Óäá�È�ó¡È�ËPÔ�Õ
å�ÓäÔ¦Ç3ædë3Ô=Õ1Ì~Ñ1á�ÓùÊjÑ1ÓäË3è�Ô¦æPæ�óXëLÑ�Ç�âLÈ�áÜð÷æ~á�ó%ÌDËLÑ1È;Ó´Õ&â3á¦È0Õ¦È�ËPÔZÖgÌ#ë3Õ¦È�ð÷ë3Í<ð÷ÈhÌrÔ¦ëqá¦È;å�Ç3È�ËéÌ¡Íäærå�Ñ1ædÕ¦Ô.ÓäóXö
â3ÍäÈ�ó@È�ËPÔ�ÌrÔ�Óäæ~Ë�ÓäÕ'ÒPÈ0Õ¦Óäá¦ÈZÒûñgò�ærå+È�î~È�áhÖPÔ¦Ç3È�Õ�ë3ô��dÈ�íXè~È�ËqÈ�á�ÌDÔ¦Óäæ~Ë�Ödå�Ç3ÓiÑ�Ç_ÇHÌrÕ'Ì.Ô�Óäè~ÇPÔgÒPÈ�âHÈ�ËLÒPÈ�ËHÑ1í%ÌDËLÒ
Ë3È�ÈhÒPÕ_Ô�æ,îPÓäÕ¦ÓäÔ�È�ÍäÈ�ó@È�ËPÔ¦Õ�óXë3ÍäÔ�Ó´âqÍ´È.Ô�Ó´ó@È�ÕZÖ\âHæ~Õ¦È0Õ¹Ì,Ñ�æ~Ë3Õ�Ó£ÒmÈ�á�ÌDô3ÍäÈ¡Ñ¦ÇHÌrÍäÍäÈ�Ë3è~È;ð¤æ~á_ÌDË:íïÌrâ3â3ÍäÓiÑ�ÌDÔ¦Óäæ~Ë
å�Ç3ÓiÑ�Ç�Ë3È�ÈZÒPÕ&Ô¦æ¡Ñ�ÇLÌDË3è~È��~È0í:Õ+ð¤á¦È��dë3È�ËHÑ1í:ñ
Ø�Ó ß1ËLÒqÌrÈ�Í<ÓäÕ=â3á�æ~ôLÌDô3Íäí,Ô¦ÇqÈ_ôHÈ�Õ¦Ô;Ñ�ÌrËLÒmÓ£ÒqÌrÔ¦È;å�Ç3È�ËéÕ�ë3ô��dÈ�í��LÈ��3Óäô3ÓäÍäÓäÔJí¡ÓäÕ¦Ë�� Ô.È�Õ�Õ¦È�ËPÔ¦ÓiÌDÍBñ�Î=ÍäÍ<æ~âPö

È�á1ÌrÔ¦ÓäædË3Õ%ÌDá¦È,Ç3ÓäèdÇ3Íäí�âLÌDá�ÌrÍäÍäÈ�Í&ô3ë3Ô%Ñ�æ~ó¡âHÌrá�ÌDÔ¦Óäî~È0Í´íïÓäË3È��3âHÈ�Ë3Õ¦ÓäîdÈêÓäË ÇLÌrá1ÒPå�Ìrá¦ÈdÖ=ÌrËLÒ Ô¦Ç3È,Õ�ë3ô��dÈ�í
è~È0Ë3È�á�ÌDÔ¦Óäæ~ËéÓäÕ.ôHæ~Ô¦ÇïðJÌrÕ¦Ô�ÌDËLÒéÑ1æ~ó@âLÌ~Ñ�ÔZñXò�ærå+È�î~È0áZÖ\Ô¦Ç3È�Ì~Ò3ÒPÓäÔ�Ó´ædËLÌrÍ<Ñ1æ~Õ�Ô_æDð³Ñ�á¦ÈZÌDÔ¦ÓäË3è,Ì�Õ¦È0âLÌrá1ÌrÔ¦È
Ò3ÌDÔ�ÌrâHÌrÔ¦Ç;ÓùðûÒmÈZÑ1á¦íPâ3Ô�Óäæ~ËXÓäÕgá¦È
�~ëqÓ´á�ÈZÒ;Õ¦ædó¡È�å�ÇHÌrÔ<ÇLÌró@âLÈ0á¦Õ<Ô¦Ç3È=ÒmÈ�Õ¦Óäè~Ë\Ö:ÌDËLÒ�Ô�Ç3È=Õ�ë3ô��dÈ�í_èdÈ�Ë3È�á1ÌrÔ�Ó´ædË
ó%Ìhí;Õ¦Ô�ÓäÍ´Í
ÇHÌhî~È�ÌrË@Ó´ó@âLÌ~Ñ�ÔZÖPÒPÈ�âHÈ�ËLÒPÓäË3è@æ~Ë¡Ô�Ç3È_ÌDâ3â3ÍäÓiÑ�ÌrÔ�Ó´ædË�ñ
ÐPÈ�á�âLÈ�ËPÔhÖ=Õ�ë3á¦â3á�ÓäÕ¦ÓäË3è~ÍäíéÈ�Ëqæ~ë3èdÇ�Ö+Ó´ÕXËqæ~ÔXÔ¦ÇqÈ,ôLÈ0Õ¦Ô%Ñ0ÌrËLÒPÓiÒ3ÌDÔ¦È@ð÷á�æ~ó ÌïÇLÌDá�ÒPå�Ìrá�È,Õ¦Ô1ÌrËLÒmâLædÓ´ËPÔhñ

Î=ÍäÔ�Ç3æ~ë3èdÇêÓäÔ.ë3Õ�È�Õ_îdÈ�á¦íïÕ¦Çqæ~á¦Ô;æ~âHÈ�á1ÌrÔ¦ÓäædË3Õ�å�Ç3ÓiÑ�Çêó�Ìrâ,ËHÌrÔ¦ëqá�ÌrÍäÍäí,Ô�æ%ÇHÌrá�Òmå²ÌDá¦È~Ö
�dÚ¡ÓäË3Õ�Ô�ÌDËLÑ1È�Õ;ærð
�������! �"$#�%'&
"�() $ +*�,�,-#�%/.�0�1�2�3�465�784:9);<#�=�>+%/();�>�=
*�?@1A.B%A3�4�CD�DEGF�HJI)E�H'KLHJM)M)N)O�P�Q
�%B>J�8.R%� J�,�,A#�%/>S;<#�?�.� �TU%/#�?

>+�8.VK�(�WX�XTY#�%Z=��!(
[
>'()>Z.�\�]'K�5�^	7L%B#)_�%B(�?�P

ã

ÈZÌdÑ¦Ç�ærð3Ô¦Ç3Èa`+ÔJíPâLÈ0ÕFæDðLÐdöBôHæ
�3È�Õb�dë3ÓiÑ��PÍäí�Ì~ÒqÒ.ë3â�ÖrÌrËHÒ.ÓùðqÌ�Ñ�æ~ó¡âHÌ~Ñ1Ô
Óäó¡âqÍ´È0ó¡È�ËPÔ�ÌDÔ¦Óäæ~Ë+ÓäÕFÒPÈ0Õ¦Óäá¦ÈZÒûÖrÔ¦Ç3È
ôLÌDËLÒPå�ÓiÒPÔ¦ÇXÓäÕ'Ñ�æ~Ë3Õ�Ó£ÒmÈ�á�ÌDô3Íäí_á�ÈZÒPëLÑ1ÈhÒ
ñgÎ&Í´Õ�æLÖdÔ¦Ç3È0á¦È.ÓäÕgÈ�Õ¦Õ�È�ËPÔ¦ÓiÌrÍäÍäí;Ë3æ�Õ¦ÇHÌrá¦ÓäË3è�ôLÈ�ÔJå+È�È�Ë@È�ËLÑ1á�íPâ3Ô¦Óäæ~Ë
ÌrËHÒ%ÒmÈZÑ1á¦íPâ3Ô�Óäæ~Ë�â3ÓäâLÈ0Í´ÓäË3È0ÕZñ
Æ�å'æDÊLÕ¦Ç@ÓäÕ'Ô�Ç3È=ôHÈ�Õ¦Ô�ærîdÈ�á�ÌDÍäÍ3ð÷á�æ~ó Ì.ÇLÌDá�ÒPå�Ìrá�È.î:ÓäÈ�å�âHæ~ÓäËPÔZñ\Î=ÍäÔ�Ç3æ~ë3èdÇXË3æ~Ô�ÌrÕ�ðBÌDÕ¦Ô'ÌDÕ²Ø³Ó ß�ËLÒ3ÌrÈ0Í

ÌrËHÒ ÐmÈ�á¦âHÈ�ËPÔZÖ�Ô�Ç3È,Ìrô3ÓäÍäÓäÔJíéÔ¦æïâLÈ0áJð÷ædá¦ó È�ËLÑ1á�í:âqÔ¦Óäæ~ËUÌDËLÒ ÒPÈZÑ1á�íPâ3Ô¦Óäæ~Ë å�ÓäÔ¦Ç7Ì	Ô¦á�Ó´îPÓiÌrÍäÍäíïó¡æ3ÒPÓùÊLÈZÒ
â3ÓäâHÈ�ÍäÓ´ËqÈ'ÓäÕ
�dë3ÓäÔ¦È+î~ÌrÍäëLÌrôqÍ´Èdñ
Î=ÍäÕ¦æHÖrÔ¦ÇqÈ�á¦È&Ó´ÕgÌ&Ë3ÓiÑ1È+Ô¦á1Ì~ÒPÈ�æDø%Õ�âLÌ~Ñ1È�ôHÈ�ÔJå+È�È�Ë�Ìrá¦ÈhÌ�ÌDËLÒ;âHÈ�áJð÷ædá¦ó�ÌrËLÑ1Èdñ
õ¤ð'Õ�ë3ô��~È0í:Õ;Ìrá¦È;Ë3ædÔ�Ñ�ÇLÌDË3è~ÈhÒ
Ö
Ô¦ÇqÈXÕ¦ë3ô��dÈ�í,èdÈ�Ë3È�á1ÌrÔ¦ÓäædËÃÑ�ÌDËêÍiÌDá¦è~È0Í´í�ôHÈ;ð÷æ~ÍiÒPÈhÒ�ÓäË:Ô�æ¡Ô�Ç3ÈXâ3ÓäâLÈ0Í´ÓäË3Èdñ
õ¤ð�Ìrá�ÈZÌ	Ó´Õ�Õ¦Ô¦ÓäÍäÍ+Ô¦Óäè~ÇPÔZÖ\Ô¦ÇqÈ%âqÓ´âHÈ�ÍäÓäË3È¡Ñ�ÌDË�ôHÈXð÷ædÍ£ÒmÈZÒïÓäËéÇLÌrÍùð�ñ,ò³ærå'È�îdÈ�áZÖ<Óùð=Õ�ë3ô��~È0í:Õ¡ÌDá¦È�Ñ¦ÇHÌrË3èdÈZÒ
ærð¤Ô¦È�Ë�ÌDËLÒïâLÈ0áJð÷ædá¦ó%ÌDËLÑ1ÈXÓäÕ�Ñ1á¦ÓäÔ�Ó£Ñ0ÌrÍJÖ�Ô�Ç3È%ÌDô3ÓäÍäÓ´ÔJí�Ô�æêÑ�ÇLÌrË3èdÈXÕ¦ë3ôL�~È�íPÕ�ð÷á¦ædó�ô3Íäæ3Ñ��êÔ�æ,ô3Íäæ3Ñ<�	å�Ó´Ô�Ç
ÌrÍäó@æ~Õ¦Ô\Ë3æ�âHÈ�áJð¤æ~á¦ó�ÌrËLÑ�È�âLÈ�ËHÌrÍäÔJí:Ödå�Ç3È�Ô�Ç3È�á+È�ËLÑ1á�íPâ3Ô¦ÓäË3è;æ~á'ÒmÈZÑ1á¦íPâ3Ô�ÓäË3èLÖdÓäÕgærð�Õ�Ó´èdË3ÓùÊjÑ�ÌDË:Ô�âLædÔ¦È�ËPÔ¦ÓiÌDÍ
ôHÈ�Ë3È1ÊLÔhñgÆ�Ç3ÓäÕ=ÒPÈ0è~á¦È0È�ærð��LÈ��3Óäô3ÓäÍäÓäÔJí_ÓäÕ�ë3Ë3ÓJ�dë3È.Ô¦æ;Æ�å+ærÊLÕ�Ç�ÖLÌDËLÒ@Ó´Õ�Ì;î~È0á¦í%ÒmÈ�Õ¦Óäá�ÌDô3ÍäÈ.â3á¦ædâLÈ�á�ÔJí:ñ

c dUÀ;ÿ<ÿgÅZþfe��4Å�gihfe���gj��½_¾
�.¾+Å�ÀX½�¾V�.Äk�,½,Å�l Â��.ÿ

Æ�Ç3È�á�È¡Ìrá�Èm�#â3á¦Óäó%ÌDá¦í�Ñ1á¦ÓäÔ¦È0á¦ÓiÌ@å�Ç3È�Ëïó¡ÈZÌDÕ¦ë3á�Ó´Ëqè¡Ô¦ÇqÈ¹Ñ�ÌDËLÒPÓiÒ3ÌDÔ¦È�Õ.ë3Õ�Ó´Ëqè Ì#ÇLÌrá1ÒPå�Ìrá¦È;ó¡È0Ô¦á¦ÓiÑ�n³Í£Ì$ö
Ô¦È0ËLÑ1íPÖ<ôLÌrËLÒmå�Ó£ÒmÔ¦Ç�ÖgÌDËLÒéÌrá�ÈZÌ3ñpo�ÌrÔ�È�ËLÑ1íéÓäÕ�Ô�Ç3È%ÌDó¡ædë3ËPÔ�æDð=Ô¦Óäó¡È;á¦È
�~ëqÓ´á�ÈZÒéÔ�æ,È�ËLÑ�á¦íPâ3Ô¡Ì�Õ�Ó´Ëqè~ÍäÈ
ô3Íäæ3Ñ��XærðFÒ3ÌDÔ�Ì3ñ\õ¤ðFÔ�Ç3È�Ñ1Óäâ3Ç3È�á+ÓäÕ'ædâLÈ0á�ÌrÔ�ÓäË3è_ÓäË¡Ýaq�r ædá'Õ�Ó´ó@ÓäÍ£ÌDá�ó@æmÒmÈ�ÕZÖdÔ¦Ç3È.ÍiÌrÔ�È�ËLÑ1íXæDð�È�ËLÑ1á�íPâ3Ô¦Óäæ~Ë
ó%Ìhí;ôHÈ�Ô�Ç3È�Ñ1á¦ÓäÔ�Ó£Ñ0ÌrÍHðBÌdÑ1Ô¦ædáZñ
r+ÌrËLÒPå�ÓiÒPÔ�Ç�Ó´Õ+Ô¦ÇqÈ�ËPë3óXôHÈ�á+ærð<ô3ÍäæmÑ��PÕ�å�Ç3ÓiÑ�Ç%Ñ�ÌDË�ôLÈ�Ñ1ædó¡â3ë3Ô�ÈZÒXÓäË�Ì
è~ÓäîdÈ�ËXâLÈ0á¦Óäæ3ÒXærð�Ô�Óäó¡È~ñ
õ¤ð�Ô�Ç3È�á�È�ÓäÕgËqæ�ð÷È0ÈZÒPôLÌdÑ<�XædËXÔ¦Ç3È.Ñ1Óäâ3Ç3È�á�Ô¦È��3ÔhÖ3Õ¦ëHÑ¦Ç�ÌrÕ+ÓäË¡ÏgÝarµó¡æ3ÒPÈ~ÖrôHÌrËLÒdö
å�ÓiÒPÔ¦Ç�ÓäËLÒPÓiÑ�ÌDÔ¦È�Õ&Ç3ærå ðBÌDÕ¦Ô=Ò3ÌDÔ�Ì¡Ñ0ÌrË,ôHÈ�È�ËLÑ�á¦íPâ3Ô¦ÈhÒ
ñ=Î&á¦ÈZÌ@ÓäÕ=ÌXÕ�âLÈhÑ1ÓùÊjÑ�ó@È�Ô¦á�ÓiÑrÖ3å�Ç3ÓiÑ�Ç�è~È�ËqÈ�á�ÌDÍ´Íäí
Õ¦ëqè~è~È0Õ¦Ô¦Õ�Ô¦Ç3ÈXÑ1æ~Õ�Ô.ð÷ædá�ÌrËïÓäó¡â3ÍäÈ�ó@È�ËPÔ�ÌDÔ¦ÓäærË�ñ�oûærå'È�á�ÌDá¦ÈZÌ@ÓäÕ.è~È�Ë3È0á�ÌrÍäÍäí�ôLÈ0Ë3È1ÊjÑ1ÓiÌDÍBÖ\ÌrÕ.Ô¦Ç3ÓäÕ�ÌrÍäÍäærå�Õ
Íäærå'È0á=Ñ1æ~Õ�Ô�âLÌrá�Ô¦Õ�Ô¦æXôHÈ�ë3Õ�ÈZÒ
ñ
Æ�Ç3È.Óäó¡â3ÍäÈ�ó@È�ËPÔ�ÌrÔ�ÓfædË.ðBÌrôqá¦ÓiÑ�ôHÈ�ÓäË3èXÑ1æ~Ë3Õ�ÓiÒPÈ�á¦ÈhÒ�ÓäÕ'Ô�Ç3È�s&Ó´ÍäÓäËA�ut=Óäá¦Ô�È���ÙXvhÛ�q�ÓäÈ�ÍiÒxw<á¦ædè~á�ÌDó¡ó�Ìrô3ÍäÈ

y ÌDÔ¦È�Î&á¦á�ÌhíPÖHå�Ç3ÓiÑ�ÇêÑ1æ~ËqÕ¦ÓäÕ¦Ô�Õ�æDð²ÌrËïÌrá¦á1Ìhí�ærð'à@Ó´Ëqâ3ë3Ô=ÍäæPæ8�Pë3â�Ô1Ìrô3ÍäÈ�Õ{z÷àDöRo6|�Æ�Õ�}�~�ÌrËLÒ,ÌDÕ¦Õ�æmÑ�Ó£ÌDÔ¦ÈZÒ
�LÓäâ��Lædâ3ÕZÖHâ3Íäë3Õ.ÌXâHÈ�á¦Óäó@È�Ô¦È�á.æDð­ó@ÈZÒPÓäë3ó Õ¦Óäú�ÈZÒûÖ�ÒPëLÌDÍ�âHæ~á¦Ô�ÈZÒ
Ö�ÉqãZÚ;ôPíPÔ¦ÈurgÍäæ3Ñ��3Ø�Î�× ó¡È�ó@æ~á¦ÓäÈ�Õ���ñ
ÏgÌdÑ¦Ç�àDöBÓäË3â3ëqÔ'ÍäæPæ8�Pë3â�Ô�ÌDô3ÍäÈ�Ñ�ÌDË,ÌrÍäÕ¦æ¡ÌdÑ1Ô=ÌrÕ=Ì@ãZÞ$öBô3ÓäÔ�Ø�Î.×éÖdð÷æ~á�Õ�Ô¦ædá¦ÓäË3èXÔ¦È0ó¡âHæ~á�ÌDá¦íXî~ÌDÍ´ëqÈ�ÕZñ
Ï<óXôHÈZÒ3ÒPÈZÒûÖLÕ�ó%ÌDÍ´ÍHÔ¦æ@ó¡ÈZÒmÓ´ëqó Õ¦Óäú�ÈZÒ ó¡È�ó@æ~á¦íXôqÍ´æ3Ñ��PÕ=Ìrá�È�ôLÈhÑ1æ~ó@Ó´ËqèXë3ô3ÓJ�dë3ÓäÔ¦æ~ëqÕ�æ~Ë,ó@æmÒmÈ�á¦Ë

q�w y Î&ÕZÖgÌrÍäÔ�Ç3æ~ë3èdÇêó�ÌrËPí�æ~ÍiÒPÈ�áXÒPÈ�îPÓiÑ1È�Õxz÷Õ�ëLÑ�Ç ÌDÕ�Ô¦Ç3Èxs=ÓäÍäÓäËA�êà-�S�8�@Õ¦È0á¦ÓäÈ�Õ�};ÍiÌdÑ<�	Õ¦ëLÑ�Çéð¤ÈZÌrÔ�ë3á¦È�Õhñ
Æ�ÇPë3ÕZÖ\Ô¦ÇqÈXë3Õ¦ÈXæDð'Õ¦ëLÑ�Çéó@È�ó¡ædá¦ÓäÈ�Õ=ËqÈ�ÈZÒPÕ�Ô�æ�ôLÈ¡Ñ1ædË3Õ¦ÓiÒPÈ0á¦ÈZÒ Õ¦È�âLÌDá�ÌDÔ¦È�ÍäíPñ_õJÔ�Ó´ÕhÖ
Ç3ærå+È�î~È0áZÖ\Õ�Ìhð¤È_Ô�æ
ÌrÕ�Õ¦ë3ó@È=Ô�ÇLÌrÔ�â3á1Ì~Ñ1Ô�ÓiÑ�ÌrÍäÍäí%ÌDÍ´Íqð÷ë3Ô�ë3á¦È;ÒPÈ�îPÓiÑ1È�Õ=å�ÓäÍäÍHÇLÌhî~È.Õ¦ëHÑ¦ÇïÑ�ÌrâLÌDô3ÓäÍäÓ´Ô�ÓäÈ�ÕZñ
õJÔXÓäÕ¡Ñ1æ~ó@âLÌrá1ÌrÔ¦ÓäîdÈ�Íäí,ÈZÌrÕ�í Ô¦æïÈ�Õ¦Ô�Ó´ó�ÌrÔ�È¡Ô¦ÇqÈ,Õ¦Óäú�È�ærð_Ì	ÇLÌrËHÒ�ÍiÌhídÈZÒéædë3Ô¡Ò3ÌrÔ1ÌrâLÌDÔ¦Ç ð÷æ~áXÔ�Ç3È�Õ¦È

Ìrâqâ3ÍäÓ£Ñ0ÌrÔ¦ÓäædË3ÕZÖ~ÌDÕgÔ¦ÇqÈ�Ò3ÌDÔ�Ì
�Hærå�Õ­ÌDá¦È&Õ¦ë3ÓäÔ�ÌDô3Íäí�á¦È0è~ë3ÍiÌrá�Ô¦æ_ÌDÍ´ÍäæråéÔ�Ç3È�ð÷ëqËLÑ1Ô¦ÓäædËLÌrÍ3ëqË3ÓäÔ¦ÕgÔ�æ�ôLÈ&âLÌ~Ñ��dÈZÒ
Ô¦ædè~È�Ô�Ç3È�áhñXÆ�Ç3ÈXÑ1æ~Õ�Ô�ærð�Ô¦Ç3È¡Ñ�æ~ËPÔ¦á�æ~Í<Íäæ~è~ÓiÑ�ÓäÕ�Ëqæ~Ô�Ñ1æ~ËqÕ¦ÓiÒPÈ�á�ÈZÒ
Ö\ôLÈZÑ0Ìrë3Õ�ÈXð÷ædá�Ô�Ç3ÈXÎ�Ï�ÐêÑ�ÌDËLÒPÓiÒ3ÌDÔ¦È�Õ
Ô¦ÇqÈ�âqá¦Óäó%ÌDá¦í¡Ñ1ædÕ¦Ô�ÓäÕ�Ô¦Ç3È�Ò3ÌDÔ�ÌDâLÌrÔ�Ç�ñ
ÐPÓäó¡ÓäÍiÌrá�Í´íPÖ�Ô¦Ç3È'Ñ�æ~Õ¦Ô<æDðLè~È�ËqÈ�á�ÌDÔ¦ÓäË3è=Ô�Ç3È+È�ËLÑ1á�í:âqÔ¦Óäæ~Ë�Õ�ë3ô��dÈ�íPÕFÓäÕ<Ñ1æ~Ë3Õ�ÓiÒPÈ�á¦ÈhÒ;Õ¦È�âLÌDá�ÌDÔ¦È�ÍäíD�hð÷ædá�Õ¦ædó¡È

ÌrÍäèdæ~á¦ÓäÔ�Ç3ó¡ÕHÕ¦ë3ôL�~È�í;è~È�ËqÈ�á�ÌDÔ¦Óäæ~Ë;ó%Ìhí�ôHÈ�ôLÈ0Ô¦Ô¦È0ágÓäó¡â3ÍäÈ�ó@È�ËPÔ¦ÈZÒ³æ~ËXÌ�Õ¦ó�ÌrÍäÍ~ó@ÓiÑ1á¦æ3Ñ1ædË:Ô�á¦ædÍ´ÍäÈ�á��rñFÐPædó¡È
Ìrâqâ3ÍäÓ£Ñ0ÌrÔ¦ÓäædË3Õ�ó%ÌhíXë3Õ�È¹Ñ�æ~Ë3Õ�Ô�ÌrËPÔ.Õ¦ëqô��~È�íPÕ.æ~á&Õ¦ë3ôL�~È�íPÕ.å�Ç3ÓiÑ�ÇêÑ�ÇLÌrË3èdÈ�æ~ËqÍ´í�á1Ìrá¦È0Í´íPÖ3ÓäË,å�ÇqÓ£Ñ�ÇêÑ0ÌrÕ¦È
Õ¦ëqô��~È�í	è~È�Ë3È0á�ÌrÔ�Óäæ~Ë,Ô�Ó´ó@È.Ó´Õ&Ë3æ~Ô.ÌXÑ1æ~ËHÑ1È�á¦Ë\ñ�ò�ærå+È�î~È�áhÖ
ÓäË�æ~Ô¦ÇqÈ�á�Ìrâ3â3ÍäÓiÑ�ÌDÔ¦Óäæ~Ë3Õ�å�ÇqÈ�á¦È;È�ËLÑ1á�íPâ3Ô¦Óäæ~Ë
�~È0í:Õ�ó�Ìhí¹Ñ�ÇLÌDË3è~È.ædË Ì�âLÌdÑ<�dÈ�ÔJöJôPídöBâLÌdÑ��~È�Ô�ôLÌDÕ¦ÓäÕZÖqÕ¦ë3ôL�~È�í@è~È�Ë3È0á�ÌrÔ�Óäæ~Ë,Ñ�ÌrË�ôHÈZÑ1ædó¡È.Ô¦Ç3È�ÒPædó¡ÓäËLÌDË:Ô
ðBÌdÑ1Ô¦ædá�Ó´Ë@Ô¦Ç3È�Ô¦Óäó¡È�ÓäÔ�Ô�Ì��~È�Õ�Ô�æXÈ�ËLÑ1á�íPâ3Ô�Ì;ô3Íäæ3Ñ��
ñ
Î=ÍäÔ¦Çqæ~ë3èdÇéÔ¦Ç3È@Õ<�~È0Ô�Ñ�Ç3È�Õ¡ÒPÈ0Õ�Ñ1á�Ó´ôHÈZÒ Ìrá�È¡èdÈZÌrá�ÈZÒéÔ�ærå²ÌDá�ÒPÕuq�w y Î=ÕhÖgÌ�è~æPæ3Òïá¦ëqÍ´ÈXæDð=Ô¦ÇPë3óXôïÓäÕ

Ô¦ÇHÌrÔZÖqÈ��LÑ1È�â3Ô³ð÷æ~á�ó@È�ó¡ædá¦ÓäÈ�ÕhÖrÍäæ~è~ÓiÑ³Ó´Ë,ÌDË�q�w y Î�Ô�Ì��dÈ�Õ�á¦ædë3è~ÇqÍ´í@Ô¦È�Ë�Ô�Ó´ó@È�Õ�Ô¦ÇqÈ�Õ�ÓäÍ´ÓiÑ1ædË,Ìrá¦ÈhÌ;ærð­ÌDË
Î�Ðmõ¦Ý.Ö
å�Ç3ÓäÍäÈ�ë3Õ¦ÓäË3è�îdÈ�á¦í,Õ�Óäó¡ÓäÍiÌrá=ÒPÈ�Õ�Óäè~ËïÔ¦ÈZÑ�Ç3Ë3ÓJ�dë3È�Õhñ;Æ�Ç:ëqÕZÖ\Ô¦Ç3È�Õ�ÈXÓäó¡â3ÍäÈ�ó@È�ËPÔ�ÌrÔ�Óäæ~Ë¡Ô�ÈZÑ�Ç3Ë3ÓJ�dë3È�Õ
ÌrËHÒ¡á�È�ÍiÌrÔ�Ó´îdÈ�Ñ1ædÕ¦Ô&ó¡È�Ô�á¦ÓiÑ1Õ=Ñ1ædë3ÍiÒ¡Ñ�ÌDá¦á¦í�ærîdÈ�á�ÓäË:Ô�æ_Ô�Ç3È.Î�ÐPõ¦Ý á¦ÈhÌrÍäóêñ
Æ�Ç3È�á�ÈêÌrá�È%Ô�Ç3á¦È0ÈêÑ1æ~ó@ó¡ædË,ÇLÌrá1ÒPå�Ìrá¦È�Óäó¡âqÍ´È0ó¡È�ËPÔ�ÌDÔ¦ÓäærËïÔ¦ÈZÑ�Ç3Ë3ÓJ�dë3È�Õ�Ñ1æ~ËqÕ¦ÓiÒPÈ�á�ÈZÒ
ñ Æ�Ç3È�Õ�ÈêÌrá�È

Õ¦ó�ÌrÍäÍ
ó¡ÓiÑ1á�æ3Ñ1æ3ÒPÈZÒ,Ò3ÌDÔ�ÌDâLÌrÔ�Ç3Õ���Ì#â3ÓäâLÈ0Í´ÓäË3ÈhÒ
ÖHÕ¦ÓäË3è~ÍäÈ�ædá=óXë3ÍäÔ�Ó´âqÍ´È.á�æ~ë3ËLÒûÖjÝ�öJÕ¦Íäæråa��Õ�Ô¦á�ëLÑ1Ô¦ëqá¦È8�gÌDËLÒ
Ì�ð÷ë3ÍäÍäí;ë3Ë3á¦ædÍäÍ´ÈhÒ%ÒqÌrÔ�ÌDâLÌrÔ�Ç�ñ
Î ó¡ÓiÑ1á�æ3Ñ1æ3ÒPÈZÒïÒ3ÌrÔ1ÌrâLÌDÔ¦Çïó%Ìhí�ôLÈXÔ�Ç3ÈXó¡ædÕ¦Ô.Ñ1æ~ó@âLÌ~Ñ1Ô�ÒPÈ0Õ¦Óäè~Ë�Ö\ô3ë3Ô.æDð÷Ô¦È�ËéÕ�ëPø
È�á¦Õ�ð÷á¦ædó�îdÈ�á¦í

âHæ:ædá�ôLÌDËLÒPå�ÓiÒPÔ¦Ç\ñ,õJÔ_Ñ1ædË3Õ¦ÓäÕ�Ô¦Õ;ærð�Ì�á�È�è~ÓäÕ¦Ô�È�á;ÊLÍäÈ~ÖgÌ,ÒqÌrÔ�ÌDâLÌrÔ�Çéærð=Õ�È�î~È�á1ÌrÍ�ð÷ë3ËLÑ�Ô¦Óäæ~ËLÌDÍ'ëqË3ÓäÔ¦Õ_Ñ1ëqÕJö
� 4	N�H��X=�,�*8>AW!#
#�&�*�,�>Z(�1�W!.6;<(�=�%/.�(�WX�!�<.6(�=�2:1-#
#�W!.�(�=�#�T�N
�X=�,�*8>Z � ���8.< Z.b(�%/.� +?�(�WXWJ9�O�()0�0
%B.< Z <9���E�1�"��!0�.�?�.R?�#�%'�!.� <9�"����!;Z���8(��).�>J"�#a Z.B,8(�%B()>Z.�()0�0
%B.< Z $(�=80�0�()>Z(�,-#�%/>Z <P������!

(�WXW!#�"D D>J"�#a '.R,8(�%B()>'.�?�.R?�#�%B2�W!#�;�()>+�!#�=8 $>Z#:1-.�"�%'�!>Z>Z.B=�#�%D%B.<()0k�X=�(� J�X=8_�W!.b;�2�;RW!.)P� ���8.B%B.D�! �(�;B*�%Z%B.B=�>$>+%/.R=80a>'#�"�(�%B0� DQ�7��V4� D"��!>+��?a�!;R%/#
;<#�=�>+%'#�WXW!.Z%B <9� +*8;Z��() �>+�8.��S%Z�! ';�.B=�>�,8(�%/>Z �� OB�JP� �D"$#�,8(�%B()_�%B(�,��8 ST!*�%B>+�8.B%D0�.B��=8.< DKLHJ JW!#�"�P�CD.�,8(G>J�!.R=�>�P

Ú

Ô¦ædó¡Óäú�ÈZÒ Ô¦æéÔ�Ç3ÈêÌrâqâ3ÍäÓ£Ñ0ÌrÔ¦ÓäædË ÌrÔXÇHÌrËLÒ
Ö�ÌDËLÒ ÌïÕ¦ó%ÌDÍäÍ'â3á�æ~èdá�Ìró�z÷ëqÕ¦ëLÌDÍ´Íäí�Ñ1ædËPÔ�ÌrÓäË3ÈhÒ�ÓäË7ÌïÕ¦ó�ÌrÍäÍ
Øa�.×	}.å�Ç3ÓiÑ�Ç�Ñ1ædË:Ô�á¦ædÍ´Õ�Ô¦Ç3È¡Ò3ÌDÔ�ÌDâLÌrÔ�Ç�ñ¡Æ�ÇqÈ¡â3á�æ~ô3ÍäÈ�ó å�Ó´Ô�ÇéÕ¦ëLÑ�ÇµÓ´ó@â3ÍäÈ�óXÈ�ËPÔ�ÌDÔ¦Óäæ~ËqÕ�Ó´Õ�Ô¦ÇLÌDÔ�Ô¦Ç3È
Ìrèdè~á�È�è:ÌDÔ¦È.ôLÌrËHÒPå�ÓiÒPÔ¦Ç,ÓäÕ�ë3Õ�ëLÌrÍäÍäíXî~È0á¦í�Íäærå ÌDËLÒ@Ô¦Ç3È_ÒmÈ�Õ¦Óäè~Ë	Ó´Õ�ëqËLÌrô3ÍäÈ.Ô¦æ@ë3Ô¦ÓäÍäÓäú�È.Ô¦Ç3È�âLÌrá1ÌrÍäÍäÈ�ÍäÓ´Õ�ó
ÓäË3Ç3È�á�È�ËPÔ=ÓäË¡Ô�Ç3È_ÌDÍ´èdæ~á�Ó´Ô�Ç3óêñ
Î��&öJÕ¦Íäærå Ò3ÌDÔ�ÌrâHÌrÔ¦Ç Óäó¡âqÍ´È0ó¡È�ËPÔ¦Õ;ÌïÕ¦ÓäË3è~ÍäÈ@á¦æ~ëqËLÒ æ~áXèdá¦ædë3â ærð�á�æ~ë3ËHÒPÕZÖ�Õ�È�âLÌDá�ÌrÔ�ÈZÒ ÓäËPÔ¦æ��

â3ÓäâHÈ�ÍäÓ´ËqÈ=Õ¦Ô1ÌrèdÈ�Õ'å�ÇqÓ£Ñ�Ç@æ~âHÈ�á�ÌDÔ¦È.æ~Ë�ÒPÓùøjÈ�á�È�ËPÔ�ô3Íäæ3Ñ<�PÕhñ�Æ�Ç3ÓäÕ�ÌrÍäÍäærå�Õ<ð÷ædá'Ñ1æ~ËqÕ¦ÓiÒPÈ�á1Ìrô3ÍäíXÇ3Óäè~ÇqÈ�á'ôHÌrËLÒdö
å�ÓiÒPÔ¦Ç�Ô�Ç3È�Ë,Ì;Õ¦ÓäË3èdÍ´È&ÓäÔ¦È�á1ÌrÔ¦ÓäîdÈ�á�æ~ë3ËHÒ
ÖLÌDÕ���ÓäËLÒPÈ�âHÈ�ËLÒmÈ�ËPÔ�ôqÍ´æ3Ñ��PÕ=Ñ�ÌrË�ôHÈ.â3á¦æ3Ñ1È�Õ�Õ¦ÈZÒ	Ô¦Çqá¦æ~ëqè~Ç�Ô¦Ç3È
â3ÓäâHÈ�ÍäÓ´ËqÈ~ñ�Æ�ÇqÈ'ËPë3óXôHÈ�áb� ÓäÕ�ë3Õ�ëLÌrÍäÍäí�Ñ�Ç3æ~Õ�È�ËXÔ¦æ.ó%ÌDÔ�Ñ�Ç�Ô�Ç3È²ÒmÈ�Õ¦Óäá¦ÈhÒXÑ1ÍäæmÑ���á1ÌrÔ�È~ñ�Î��&öJÕ¦Íäæråéâ3ÓäâHÈ�ÍäÓäË3È
Ñ�ÌDË¡á¦ëqË ÌDÔ'Ì�Ç3Óäè~Ç¡Ñ1Íäæ3Ñ��Xá�ÌrÔ�È�ÌrËLÒ@Ì~Ò3ÒPÓäË3è�ó¡æ~á�È�á¦È�èdÓäÕ¦Ô¦È0á�Õ¦Ô�ÌDè~È�Õ=Ñ0ÌrË%ÌDÍäÍ´ærå ÌrË@È�î~È�Ë�Ç3ÓäèdÇ3È�á�Ñ1ÍäæmÑ��
á�ÌDÔ¦È�zJÌrËLÒ	Ô¦Ç3È0á¦È1ð÷ædá¦È@Ç3Óäè~Ç3È�á�ôLÌrËLÒmå�Ó£ÒmÔ¦Ç$}&å�ÓäÔ¦Ç3ædë3Ô�Ìhø
ÈZÑ1Ô�Ó´Ëqè%Ô�Ç3ÈXÍiÌrÔ�È�ËLÑ1í��dñ�q3ëqá¦Ô¦ÇqÈ�á¦ó@æ~á¦ÈdÖ
Õ¦ÓäËLÑ1È
ó¡ædá¦ÈXædâLÈ�á1ÌrÔ�Ó´ædË3ÕXÑ�ÌrËµôLÈ,ÒPædË3È¡ÓäË�âHÌrá�ÌDÍäÍ´È0ÍBÖ\Ô¦ÇqÓ´Õ;Ô¦ÈhÑ¦ÇqË3ÓJ�~ëqÈ%ó�Ìhí,Óäó¡â3á�ærî~È;Ô¦Ç3È�ærîdÈ�á�ÌDÍ´Í+ÍiÌrÔ�È�ËLÑ1í
å�Ç3È�Ë,Ñ1ædó¡âLÌDá¦ÈZÒ@å�ÓäÔ¦Ç�Ì;ó¡ÓiÑ1á�æmÑ�æmÒmÈZÒXÓäó¡âqÍ´È0ó¡È�ËPÔ�ÌDÔ¦Óäæ~Ë\ñ

q3ædá�ó¡ædÕ¦Ô.ÌrÍäè~ædá¦ÓäÔ¦Ç3ó@ÕZÖ
Ì��&öJÕ¦Íäærå�Ö
Õ¦ÓäË3èdÍäÈ_á�æ~ë3ËLÒïâqÓ´âHÈ�ÍäÓäË3ÈXÕ¦Çqæ~ë3ÍiÒ	á¦È��dë3Óäá¦È@á¦ædë3è~Ç3Íäí,Ô�Ç3ÈXÕ�ÌDó¡È
Ìrá�ÈZÌ�ÌrÕ.Ì¡ó@ÓiÑ1á¦æ3Ñ1æ3ÒPÈZÒ	Ò3ÌrÔ1ÌrâLÌDÔ¦Ç,ædá�ÌDË,ë3Ë3âqÓ´âHÈ�ÍäÓäË3ÈZÒ	á¦ædë3ËLÒ
Ö
å�ÇqÓ´ÍäÈ�æDøjÈ0á¦ÓäË3è%Ì�Ñ1ædË3Õ¦ÓiÒPÈ0á�ÌrôqÍ´È;ÓäóXö
â3á�ærî~È�ó@È�ËPÔ�Ó´Ë	ôLÌrËLÒmå�Ó£ÒmÔ¦Ç�Ö
ÌrÕ&Ô¦Ç3È�ð÷ë3ËHÑ1Ô¦Óäæ~ËHÌrÍ�ëqË3ÓäÔ¦Õ�ÌDá¦È;ó¡ædá¦È.Ç3Óäè~Ç3Íäí@ë3Ô¦ÓäÍäÓäú�ÈZÒ
ñ&Æ�ÇPë3ÕZÖ
Ì���öBÕ�Í´ærå
Ô¦ÈhÑ¦ÇqË3ÓJ�~ëqÈ�Õ¦Ç3ædë3ÍiÒ¡ÌDÍ´å�ÌhíPÕ'ôHÈ.ë3Ô¦ÓäÍäÓäú�ÈZÒ#ë3Ë3ÍäÈ�Õ¦Õ&Õ¦ëLÑ�Ç,ÌXÒPÈ�Õ�Óäè~Ë�Õ¦Óäó¡âqÍ´í;Ñ�ÌrË�Ë3ædÔ�ôLÈ.Óäó¡â3ÍäÈ�ó@È�ËPÔ¦ÈZÒ�ÓäË
Ô¦ÇqÈ�Ìhî~ÌDÓäÍ£ÌDô3ÍäÈ=Ìrá�ÈZÌ;æ~á�Ô�Ç3È�Óäó¡â3ÍäÈ�óXÈ0Ë:Ô1ÌrÔ�Ó´ædË�ðJÌrô3á�Ó£Ñ³ÓäÕ��LÓäâPö'�Hæ~â¡âHæPæ~áhñ
Î ð÷ë3ÍäÍäí_ëqË3á¦ædÍ´ÍäÈZÒ@Ò3ÌrÔ1ÌrâLÌDÔ¦Ç�ÖPå�ÇqÈ�á¦È.ÈZÌdÑ¦Ç�á�æ~ë3ËLÒ#ÓäÕ�Õ¦È�âLÌDá�ÌDÔ¦ÍäíXÓäó¡â3ÍäÈ�ó@È�ËPÔ¦ÈZÒ�ÓäË¡ÇLÌDá�ÒPå�Ìrá�È~ÖLÑ�ÌDË

ôHÈ_Õ�Ó´ó@ÓäÍ£ÌDá¦Íäí;â3ÓäâLÈ�ÍäÓäË3ÈZÒ Ô¦æ¡á�ë3ËéÌrÔ�Ì#Ç3Óäè~Ç,Õ�âLÈ0ÈZÒ
ñ�Æ�ÇqÓ´Õ&ærø
È�á¦Õ.È�Õ�Õ¦È�ËPÔ�Ó£ÌDÍäÍ´í�Ë3æ@ÍiÌrÔ¦È0ËLÑ1íêÌdÒPî~ÌrËPÔ�ÌDè~È
ærî~È0á¡Ì��&öJÕ¦Íäærå ÒqÌrÔ�ÌDâLÌrÔ�Ç�Ögôqë3Ô¡ÌrÍäÍäærå�Õ.ð÷ædáXÔ¦Ç3È�ó%Ì��3Ó´ó;ë3ó)ôLÌDËLÒPå�ÓiÒPÔ�Ç âHæ~Õ�Õ¦Óäô3ÍäÈ~ñ Æ�Ç3È�ËPë3óXôHÈ�á
ærð�â3ÓäâHÈ�ÍäÓäË3È�Õ¦Ô�ÌDè~È�Õ@ÓäÕ%Ñ�Ç3æ~Õ�È�Ë7ÓäË7ÌéÕ�Ó´ó@ÓäÍ£ÌDá�å�ÌhíéÔ¦æ�Ô�Ç3ÈêÝ�öJÕ¦Íäærå Ó´ó@â3ÍäÈ�óXÈ�ËPÔ�ÌDÔ¦Óäæ~ËqÕZÖ<Ô¦æéâqá¦ærîPÓiÒPÈ
æ~âHÈ�á1ÌrÔ¦ÓäædËêå�Ç3ÓiÑ�Çïó%ÌrÔ1Ñ�Ç3È�Õ�Ì@Ô1Ìrá¦èdÈ�Ô�Ñ1Íäæ3Ñ<�ïá�ÌDÔ¦È~ñ�Æ�Ç3È¡Ìrá�ÈZÌ�Ñ1æ~Õ�Ô_ÌrËHÒ,Ìhî~ÌrÓäÍiÌrô3ÍäÈ.ôLÌDËLÒPå�ÓiÒPÔ¦Çïærð�Ì
ð÷ë3ÍäÍ
â3ÓäâHÈ�ÍäÓäË3È�ÌDá¦È�Ì;Õ¦Óäó¡âqÍ´È�óXëqÍ´Ô�Óäâ3ÍäÈ�ærðFÔ�Ç3È�Ìrá�ÈZÌXÌrËLÒ@ôLÌDËLÒPå�ÓiÒPÔ�ÇXð÷ædá=Ì �&öJÕ¦Íäærå7Óäó@â3ÍäÈ�ó¡È�ËPÔ1ÌrÔ¦ÓäærË�Ö
Õ¦æXëqË3á¦ædÍ´ÍäÈZÒ@â3ÓäâHÈ�ÍäÓäË3È�Õ=Ìrá�È.Ë3æ~Ô=Ñ1ædË3Õ¦ÓiÒPÈ0á¦ÈZÒ�ÓäË�ÒPÈ�Ô�ÌDÓäÍ�ÓäË¡Ô�Ç3ÓäÕ=ÌrËLÌDÍ´íPÕ�Ó´Õhñ
õJË è~È�Ë3È0á�ÌrÍJÖ�å'È�å�ÓäÍäÍ²ÌDÔ¦Ô¦È0ó¡â3Ô;Ô¦æïá¦ædë3è~Ç3ÍäíéÈ�Õ�Ô¦Óäó%ÌDÔ¦È@Ô¦Ç3È�ËPë3óXôHÈ�á_æDð=â3ÓäâLÈ0Í´ÓäË3È�Õ�Ô�ÌrèdÈ�ÕXå�Ç3ÓiÑ�Ç

å+æ~ë3ÍiÒïôHÈ¡á¦È
�~ëqÓ´á�ÈZÒµÔ¦æêÌDÍäÍ´æråVÌ�t=Óäá�Ô¦È���Óäó¡âqÍ´È0ó¡È�ËPÔ�ÌDÔ¦Óäæ~Ë	Ô¦æ,á�ë3Ë ÌDÔ¹Ì,ÉS�,×,ò³ú%Ñ1Íäæ3Ñ���Ñ1í3Ñ1ÍäÈ~ñïÎ
ÔJíPâ3ÓiÑ�ÌrÍJÖdó¡æ3ÒPÈ�á�Ë�Ödó¡ÓiÒPÕ¦Óäú�ÈhÒuqbw y ÎUÕ�ëLÑ�Ç,ÌrÕ+Ô¦Ç3È�t=Óäá�Ô¦È���s=Ý�t.Ú8�8�;Ñ1ædË:Ô1ÌrÓäË3Õ�É8�S�8�.àDöRo6|�Æ�Õ�ÌrËLÒ�ã0à
r�Í´æ3Ñ��3Ø�Î.×�ÕZÖdå�Ç3ÓäÍäÈ²Ì.ÔJíPâ3ÓiÑ�ÌDÍLÑ1ædó¡âLÌdÑ1ÔZÖrÍäærå Ñ1æ~Õ�Ô@q�w y Î7Õ�ëLÑ�Ç%ÌrÕ�Ô¦Ç3Èas&Ó´ÍäÓäËA�_ÐPâLÌDá¦Ô1ÌrËLÚS¡as=Ý�Ú~ÐqÉ8�
Ñ1ædË:Ô1ÌrÓäË3Õ�ãdÖ çS�8��o6|�Æ�Õ=ÌDËLÒ�`urgÍäæ3Ñ��mØ³Î�×�Õhñ
Æ�Ç3æ~ëqè~Ç¡Ô�Ç3È�Õ�È�Óäó¡â3ÍäÈ�ó@È�ËPÔ�ÌrÔ�Óäæ~Ë�Õ��~È�Ô1Ñ¦ÇqÈ�Õ�Ìrá¦È³ð÷æ~á=Ì�âLÌDá¦Ô¦ÓiÑ1ëqÍ£ÌDá¢q�w y Î ðBÌrô3á�ÓiÑrÖ~Ô�Ç3È�Õ�È_Ñ1æ~ó@âLÌráÜö

ÓäÕ¦ædË3Õ�Õ¦Ç3ædë3ÍiÒ�Ñ�Ìrá�á¦í¡ærîdÈ�á�£�Ô¦æ;æ~Ô¦ÇqÈ�á�q�w y Î&Õ=ÌrËLÒ@Õ�ó%ÌrÍäÍ3Î.ÐPõ¦Ý+ÕZñ

¤ ¥ ¿�¦�h�¾gÀ §;¿
��hf�,ÅZÄ4Ä=À;¿
�

Æ�Ç3È�Ñ1ædÕ¦Ô�ð¤æ~á�Ô¦ÇqÈ�ÒmÓfø
È�á�È�ËPÔ=Óäó¡â3ÍäÈ�ó@È�ËPÔ�ÌDÔ¦Óäæ~Ë�� ÕgÑ1á�í:âqÔ¦æ~èdá�ÌDâ3Ç3ÓiÑ.Ñ1æ~á�È�Õ.å'È�á�È�È�Õ�Ô¦Óäó%ÌDÔ¦ÈZÒ#ô:í@Õ¦ë3ó@ó%Ì$ö
á¦Óäú�ÓäË3è;Ô¦ÇqÈ_Ñ1æ~Õ�Ô¦Õ&ærðFÔ�Ç3È�Óäá�á¦È0Õ¦âHÈZÑ1Ô¦ÓäîdÈ_Õ�ë3ôjÑ�æ~ó¡âHæ~ËqÈ�ËPÔ¦ÕZñ
ÐPÈ�á�âLÈ�ËPÔ�ÓäÕ�Ô�Ç3È_ôHÈ�Õ�Ô=ð¤á¦æ~ó)Ì;â3ë3á�È_âHÈ�áÜð÷æ~á�ó%ÌrËHÑ1È�îPÓäÈ�å�âLædÓäË:Ô�ÓäË�ÇLÌDá�ÒPå�Ìrá�È~Ö
ÌrÍäÔ¦Ç3ædë3è~Ç,Ø³Ó ß�ËLÒ3ÌrÈ0Í

ÌrËHÒ¡Æ�å+ærÊHÕ¦Ç,Ìrá�È_Ñ1Íäæ~Õ�È�Ô¦æXÓäÔ+Ó´Ë�âHÈ�áJð¤æ~á¦ó�ÌrËLÑ�È�ÌDËLÒ�Ìrá�ÈZÌ8¨DâLÈ�áÜð÷æ~á�ó%ÌDËLÑ1È~ñ�Æ�Ç3È�Õ¦ÓäèdË3ÓùÊjÑ�ÌrËPÔ+â3á¦ædô3ÍäÈ�ó
å�ÓäÔ¦ÇêÐmÈ�á¦âHÈ�ËPÔ�ÓäÕ=Ô�Ç3È�á¦ÈXÓäÕ.ÌXÕ¦ÓäèdË3ÓùÊjÑ�ÌrËPÔ&ó¡ÓäË3Óäó_ëqó·Õ�Óäú�È�ð¤æ~á=Ô�Ç3È;Ó´ó@â3ÍäÈ�ó¡È0Ë:Ô1ÌrÔ�Ó´ærË@Ô¦æ@ôLÈ;È1ø
ÈZÑ1Ô¦ÓäîdÈ~ñ
×�Î.Ø=Ð	Ó´Õ�Ñ1ædó¡âLÌDá�ÌDÔ¦Óäî~È�Íäí�Ìhåa�:å�Ìrá1Ò
ÖHá¦È��dë3Óäá�Ó´Ëqè%ôHæ~Ô�ÇÃÌ@á�È�ÍiÌrÔ¦ÓäîdÈ�Íäí%ÍiÌDá¦è~ÈXÌró@æ~ë3ËPÔ�æDð'Íäæ~è~ÓiÑ�ÌDËLÒïÌ
ÍiÌrá�è~È�Ìró@æ~ë3ËPÔgæDð­Øa�.× ð÷ædá�Ô�ÌDô3ÍäÈ�ÍäæPæ8�Pë3âqÕZñ
Æ�Ç3È�æ~Ô�Ç3È�áXâ3á�æ~ô3ÍäÈ�ó å�ÓäÔ�Ç Ø�Ó ß1ËHÒ3ÌrÈ�Í�ÌrËHÒ�ÐPÈ�á�âLÈ0Ë:Ô@ÓäÕ_Ô�ÇLÌrÔ;Õ¦È�âHÌrá�ÌDÔ¦È,âqÓ´âHÈ�ÍäÓäË3È�ÕXÌrá�È%á�È��dë3Óäá¦ÈZÒ

ð÷ædá�È�ËLÑ1á�í:âqÔ¦Óäæ~ËêÌDËLÒ�ÒPÈZÑ1á�íPâ3Ô¦Óäæ~Ë\ñ=ò=ÌhîPÓäË3è;Ô¦æXÓäó¡â3ÍäÈ�ó@È�ËPÔgÕ¦È0âLÌrá1ÌrÔ¦È�â3ÓäâLÈ�ÍäÓäË3È�Õ³ð÷æ~á�È0ËLÑ1á¦íPâ3Ô�Óäæ~ËêÌDËLÒ
ÒPÈZÑ�á¦íPâ3Ô¦ÓäædËêÒPæ~ëqô3ÍäÈ�Õ�Ô¦Ç3È�ÌDá¦ÈZÌ;æDð­ÌrË�Óäó¡âqÍ´È0ó¡È�ËPÔ�ÌDÔ¦Óäæ~Ë�ÓfðgôHæ~Ô�Ç%ædâLÈ0á�ÌrÔ�Óäæ~Ë3Õ=ÌDá¦È.á¦È��dë3Óäá�ÈZÒ
ñ
Î Ø�Ý�ÞXâqÓ´âHÈ�ÍäÓäË3È¡Ñ�ÌDËêôHÈXÈZÌrÕ�ÓäÍ´í	ó¡æ3ÒPÓùÊLÈZÒ�Ô�æ,âHÈ�áJð÷ædá¦ó ôLædÔ¦ÇéÈ�ËLÑ�á¦íPâ3Ô¦ÓäædË�ÌrËLÒïÒPÈZÑ1á�íPâ3Ô¦Óäæ~ËéôPí

á¦È0â3ÍiÌ~Ñ1ÓäË3èïÔ¦Ç3È�Ì~Ò3ÒmÈ�á¦ÕXå�ÓäÔ¦Ç�ÌdÒ3ÒPÈ�á�¨rÕ�ë3ô3Ô¦á1Ì~Ñ1Ô�È�á¦ÕpzJÌ,Ë3æïÑ1æ~Õ�ÔXæ~á;î~È�á�íéÍ´ærå+ö¦Ñ1ædÕ¦Ô�Ô�á�ÌrËqÕJð÷ædá¦ó%ÌDÔ¦Óäæ~Ë�}�ñ
Æ�Ç3È�qqÈ�ÓäÕ¦Ô�È�Í'ôHÌrÕ¦ÓäÕ�æDð³× Î�Ø=ÐéÌDËLÒïÆ�å+ærÊLÕ�ÇÃÌDÍ´ÍäæråVÌ¡Õ�ÍäÓ´èdÇPÔ¦Íäí,ÔJå+ÈZÌ��dÈZÒïâ3ÓäâLÈ0Í´ÓäË3È;Ô¦æ	ÇLÌrËLÒmÍ´ÈXôHæ~Ô�Ç
á¦ædÍäÍ´Õ+È1ø
ÈZÑ1Ô�Ó´îdÈ�Íäí:ñ
© �����!
>'.�;Z��=��!ª)*8.:�8()
(«WX�X?a�!>b#�Tb>+�8.a '.�>J*�,u(�=80¬�8#�W!0�>+�X?�.a#�Tb>+�8.�­��X, ­8#�,�9-(�=80{>+�8.�_�%B(�=
*�W!(�%'�!>+2a()>@"����!;Z�

0
�X®-.R%/.R=�>¯,8()>J�8 L?�(�2�%/.�ª)*��X%B.�0
�X®A.B%B.B=�>AW!()>Z.B=8;R�!.< �P° 4�W!#�"�;<#G '>�%B.<�G�! J�!#�=�#�T�>J�8.�±D�X%B>Z.<²³ 4DW!>+�8#�*8_��u"��!>J�� Z#�?�.�;�(��).<()>Z �9A*8 J*8(�WXW!2¬0�.<(�WX�X=8_�"��!>+��W!#
;<(�W�?�.B?�#�%Z�!.< :(�=80u>J�8.k*8 '.�#�Tb>+%Z�! '>Z()>Z.�1�*�®-.B%B �>'#
�X?a,�W!.B?�.R=�>A"��!0�.�?�*8²
.< �9)"����!;Z��?�(�2
=8#G>�1-.6,�%/.� '.R=�>L�X=�#G>J�8.R%�Q�7D��4�T�(�1�%Z�!;<

�

Î&Í´èdæ~á�Ó´Ô�Ç3ó õJó¡âqÍ´È0ó¡È�ËPÔ�ÌDÔ¦Óäæ~Ë o�ÌDÔ¦È�ËLÑ�í r'ÌDËLÒPå�ÓiÒPÔ¦Ç ÐPÓäú�È ÐPÓäú�È
zJÑ1í3Ñ1ÍäÈ�Õ�} z÷ô3Íäæ3Ñ��PÕ�¨~Ñ�ímÑ�Í´È
} z¤àrö<o�|³Æ�Õ�} zBrgÍäæ3Ñ��3Ø�Î�×´}

×�Î.Ø=Ð ×�ÓiÑ1á¦æ3Ñ1æ3ÒPÈZÒ	Ò3ÌrÔ1ÌrâLÌDÔ¦Ç à-`8� ã�¨Dà-`8� ç~çS� `
Þhö¦ÐPÍäærå�ÖdÕ¦ÓäË3è~ÍäÈ.á¦ædë3ËLÒ ã�v8� ã�¨qãZÞ ãZÉ8�S� ãZÚ

Ø�Ý�Þ Éhö¦ÐPÍäærå�ÖdÕ¦ÓäË3è~ÍäÈ.á¦ædë3ËLÒ ã��~Ú ã�¨dÚ8� ãZç8�S� �
`$öÜÐmÍ´ærå�ÖDð÷ædÍ£ÒmÈZÒ@á¦æ~ëqËLÒ ãZÞrà ã�¨Dà-� v~ÉS� �

Ø³Ó ß�ËLÒ3ÌrÈ0Í Úhö¦ÐPÍäærå�ÖdÕ¦ÓäË3è~ÍäÈ.á¦ædë3ËLÒ Ú8� ã�¨qã�� ç8`S� `
ÐPÈ0á¦âHÈ�ËPÔ `;Õ¦Íäærå�Ö-`;á�æ~ë3ËHÒ �~Ú ã
¨rà �8`8�S� �

Õ¦ÓäË3èdÍ´È.á�æ~ë3ËLÒ �~Ú ã�¨S�~Ú ãZÞ8�S� �
Æ�å+ærÊLÕ�Ç �hö¦ÐPÍäærå�ÖdÕ¦ÓäË3è~ÍäÈ.á¦ædë3ËLÒ É8� ã�¨qãZÞ ã��~ÉS� �

àDöÜÐmÍ´ærå�ÖDð÷ædÍ£ÒmÈZÒ@á¦æ~ëqËLÒ Þ~Þ ã�¨S�~Ú `~çS� �

q�Óäèdë3á¦ÈXã8n<Î�Ñ�æ~ó¡âHÌrá¦ÓäÕ�æ~ËXærð<Ô¦Ç3È�Ó´ó@â3ÍäÈ�ó¡È0Ë:Ô1ÌrÔ�Ó´ærËXÑ1ædÕ¦Ô¦Õ³ð÷æ~á�Ô�Ç3È.î~Ìrá�Ó´ædë3Õ�ÌrÍäè~ædá¦ÓäÔ¦Ç3ó@Õ

Î�ó¡ÓU�3ÈZÒ;Ø�Ó ß1ËLÒ3ÌDÈ�ÍHâ3ÓäâLÈ�ÍäÓäË3È.Ñ�ÌrË�Õ¦ÇHÌrá¦È.Ô�Ç3È�ÐdöBôHæ
�3È�Õ�ôPíXÕ¦È�âHÌrá�ÌDÔ¦ÓäË3è;Ô¦Ç3È.Ô�á�ÌrËqÕJð÷ædá¦ó%ÌDÔ¦Óäæ~Ë;ð¤á¦æ~ó
Ô¦ÇqÈ_ÐdöJôLæ
��ÖHå�Ç3ÓiÑ�Ç ÌdÒ3ÒPÕ.ÌXÕ¦ó�ÌrÍäÍHÕ¦Ô¦È0âÃÌDËLÒ�Õ¦ædó¡È�Ìrá�ÈZÌ3ñ&ò�ærå+È�î~È�áhÖHÔ¦Ç3ÓäÕ�ÌDâ3â3á�æ:Ì~Ñ�Ç�Õ¦Ô�ÓäÍ´Í\á¦È��dë3Óäá�È�Õ�Ì
Ñ1ædó¡â3ÍäÈ�Ô�È�Íäí�ÒmÓfø
È�á�È�ËPÔ'Ñ1æ~Íäë3ó@Ë�ó¡ÓU�3ÓäË3è+Õ¦Ô¦È0â%ÌrËHÒ�Ô�Ç3È�á¦È�ð÷æ~á�È=Ì�ðJÌrÓäá¦Íäí.Õ¦Óäè~ËqÓfÊ
Ñ�ÌrËPÔgÌrá�ÈZÌ.Ñ1æ~Õ�ÔgÔ¦æ.ÇLÌDËLÒPÍäÈ
ôHæ~Ô¦ÇïÈ�ËLÑ�á¦íPâ3Ô¦ÓäædËÃÌDËLÒ,ÒPÈZÑ�á¦íPâ3Ô¦ÓäædË�ñ_ÐPædó¡È.Óäó¡â3ÍäÈ�ó@È�ËPÔ�ÌDÔ¦ÓäærË3Õ+å'ædë3ÍiÒ�â3á¦ædôLÌrôqÍ´í�ß1ëqÕ¦Ô=ëqÕ¦ÈXÕ¦È0âLÌrá1ÌrÔ¦È
â3ÓäâHÈ�ÍäÓ´ËqÈ�ÕZÖ
Õ�ÓäËLÑ1ÈXÒPÈ�âHÈ�ËLÒPÓäË3è�æ~ËïÔ¦ÇqÈ_Óäó¡âqÍ´È0óXÈ�ËPÔ�ÌrÔ�Óäæ~Ë¡Ô�ÈZÑ�Ç3Ë3ædÍ´ædè~íPÖ3Ô�Ç3È¡Ñ1æ~Õ�Ô.ærð'Ô�Ç3È¹Ð:öBôHæ
�3È�Õ.ó%Ìhí
ôHÈ_ÒPå�ÌráJð¤ÈZÒXôPí¡Ô�Ç3È�á�È�ó%ÌDÓ´ËqÓ´Ëqè�Ñ�æ~Õ¦Ô�ÕZñ
ÐPÈ�á�âLÈ�ËPÔ.Ñ�ÌrË�Õ¦ÇHÌrá¦È;ÌrÍäó¡ædÕ¦ÔgË3æXÌrá�ÈZÌ;ôHÈ�ÔJå'È0È�Ë,È�ËLÑ�á¦íPâ3Ô¦ÓäædË ÌDËLÒ�ÒPÈZÑ1á�íPâ3Ô¦Óäæ~Ë\Ö3Õ¦ÓäËLÑ�È�ÓäÔ+ÓäÕ=ÒPÈ�âHÈ�ËPö

ÒPÈ�ËPÔ�ædË¡ÓäËPî~È�á�Õ¦È1öJÕ¦ôHæ
�3È�Õ�ÌDËLÒ@Ó´ËPîdÈ�á¦Õ�È1öBÔ�á�ÌDË3ÕJð÷ædá¦ó�ÌrÔ¦ÓäædË3Õ<ð÷ædá²ÒPÈhÑ1á¦íPâ3Ô�Ó´ædË�ñgÆ�ÇqÓ´Õ+È�Õ�Õ¦È�ËPÔ¦ÓiÌDÍ´Íäí�ÒPæ~ë3ôqÍ´È0Õ
Ô¦ÇqÈ�Ñ�æ~Õ¦Ô&ærðgÌXÐPÈ�á¦âHÈ�ËPÔ�ÒmÈ�îPÓ£Ñ�È�å�Ç3ÓiÑ�Ç%âHÈ�áÜð÷æ~á�ó¡Õ+ôLædÔ¦Ç�È�ËLÑ1á�íPâ3Ô¦Óäæ~ËïÌrËLÒ@ÒPÈZÑ1á�í:âqÔ¦Óäæ~Ë�ñ

µa¶�· ¸º¹¼»¾½
×�Î.Ø=Ð.ÓäÕ�ëqËPð÷æ~á�Ô¦ë3ËHÌrÔ¦È0Í´í�Ñ1ædó¡âLÌDá�ÌDÔ¦Óäî~È�Íäí=Ñ1ædÕ¦Ô�Í´í.Ô�æ=Óäó¡â3ÍäÈ�ó@È�ËPÔ3æ~Ë�Õ¦ó%ÌDÍäÍ~ÒPÈ�îPÓiÑ1È�ÕZÖdÌrÕgÌ+ó¡ÓiÑ1á�æmÑ�æmÒmÈZÒ
Ò3ÌDÔ�ÌrâHÌrÔ¦ÇµÓäÕ_ó@æ~á¦È¡Ñ�æ~ó¡âHÌ~Ñ1Ô;Ô¦Ç3È0Ë ÌïÝ�öBÕ�Í´ærå â3ÓäâLÈ�ÍäÓäË3È~ñ Æ�Ç3È�á¦È,ÌDá¦È,ÌrÍäÕ¦æ	Õ¦È�îdÈ�á�ÌDÍ�Ñ1ædó¡âLÌDá�ÌrÔ�Óäî~È�Íäí
È��3âHÈ�Ë3Õ¦ÓäîdÈ�È0Í´È0ó¡È�ËPÔ¦Õ
n�î~ÌDá¦ÓiÌrôqÍ´È+á¦ædÔ�ÌDÔ¦Óäæ~Ë3ÕhÖ~Ô�Ç3È=ËPë3ó@È�á¦ædë3ÕZÖdÍiÌrá�è~È=ÐdöJôLæ
�Xá¦È�ð÷È�á¦È0ËLÑ1È�ÕhÖjÌDËLÒ;Ô¦ÇqÈ��~Ú�ô3ÓäÔ
óXë3ÍäÔ¦Óäâ3ÍäÓäÈ�áhñFÐPÓäËLÑ�È�Ô¦Ç3È�óXë3ÍäÔ¦Óäâ3ÍäÓäÈ�á'ÌrËHÒ¡á�æ~Ô1ÌrÔ¦È0Õ�Ìrá�È�æ~Ë�Ô�Ç3È_Ñ1á�Ó´Ô�ÓiÑ�ÌrÍ\âLÌrÔ�Ç ÌDËLÒ�Ñ�ÌrË	Ë3æ~Ô�ÇLÌhîdÈ�Ô¦ÇqÈ�Óäá
ÍiÌrÔ�È�ËLÑ1ÓäÈ�Õ&Ç3ÓiÒ3ÒPÈ�Ë�ÖHÌ;ðBÌDÕ¦Ô=ÌDá¦á�Ìhí@óXë3ÍäÔ¦Óäâ3ÍäÓäÈ�á'ÌDËLÒ,Ì;ôLÌDá¦á¦È0Í�á¦ædÔ�ÌDÔ¦æ~á.Ìrá�È�Ë3ÈZÑ1È0Õ¦Õ�ÌDá¦í,Ô�æ%ÌdÑ¦ÇqÓ´È0î~È.è~æPæ3Ò
âHÈ�áJð÷ædá¦ó�ÌrËLÑ1Èdñ

¿6ÀJÁ$À+Á ÂÄÃBÅ�Æ�Ç�Å�Ç�È6É¯È¼È6Ê�Ë
Ê�Ì�Ê�Ë
Í
Î ó@Ó£Ñ�á¦æ3Ñ1æ3ÒPÈZÒéÒ3ÌDÔ�ÌDâLÌrÔ�Çéå'ædë3ÍiÒ,á�È��dë3Óäá¦È¡àprgÍäæ3Ñ��mØ³Î�×�Õ�ð÷æ~á_Ì´�~Ú�ô3ÓäÔhÖFÚ�á�ÈZÌ~ÒûÖ<æ~Ë3ÈXå�á�Ó´Ô�È¡âHæ~á�Ô
á¦È0è~ÓäÕ¦Ô�È�á.ÊLÍäÈ.ð÷ædá�Ì@Õ�Ñ�á�ÌrÔ1Ñ�Ç3âLÌ~ÒïÌrËHÒ,Õ�ë3ô��~È0í,Õ¦Ô�æ~á�ÌDè~È~Ö\ÌrË3ædÔ¦Ç3È�á.à�rgÍäæ3Ñ��mØ³Î�×�Õ&ë3Õ¦ÈhÒéÌrÕ�Øa�.×�Õ=Ô�æ
Õ¦Ô�æ~á�È�Ô¦Ç3È�Ðdö<r�æ
�ûÖ��dÚuo�|³Æ�Õ+ð÷æ~á�Ô�Ç3È�s���Ø�Ö��~Úuo6|�Æ�Õ+ð÷ædá'Ô�Ç3È_Ì~ÒqÒPÈ�á�¨DÕ¦ë3ôqÔ¦á�ÌdÑ1Ô¦È0áZÖ<ãZÞS� o6|�Æ�Õ�ð¤æ~á�Ì
ôLÌDá¦á¦È0ÍLá�æ~Ô�ÌDÔ¦ædáZÖ3ÌrËHÒXÉ3ãZÚ�o6|�Æ�Õ�ð÷æ~ágÌrË¡ÌDá¦á1Ìhí_óXë3ÍäÔ�Ó´âqÍ´ÓäÈ�á�ÎZñ<Æ�ÇPë3ÕhÖ~Ô�Ç3ÓäÕ'Ò3ÌrÔ1ÌrâLÌDÔ¦ÇXá�È��dë3Óäá¦È�Õ�á�æ~ë3èdÇ3Íäí
`ur�Í´æ3Ñ��3Ø�Î.×�Õ=ÌrËLÒ@ç~ÞS` o6|�Æ�ÕZñ
Î=Õ�Õ¦ë3ó@Ó´Ëqè ÌéÕ�ÓäË3è~ÍäÈêÑ1í3Ñ1ÍäÈïÍiÌrÔ¦È0ËLÑ1í ð÷ædá%ÌDÍ´Í&æ~âHÈ�á�ÌDÔ¦Óäæ~ËqÕ¡ô3ë3Ô�Ô�Ç3ÈêóXëqÍ´Ô�Óäâ3ÍäÓ´È0áZÖ'ÌDËLÒ7ÌDÕ¦Õ¦ëqó¡ÓäË3è

��Ñ1í3Ñ1ÍäÈ�Õ.ð÷ædá.Ô¦Ç3ÈXóXë3ÍäÔ�Ó´âqÍ´ÓäÈ�áhÖ3ÓäÔ.å'ædë3ÍiÒ�Ô�Ì��~È;á¦ædë3è~Ç3Íäí�ã
�XædâLÈ�á1ÌrÔ�Ó´ædË3Õ.ð÷ædá.ÈZÌ~Ñ�Çïá¦æ~ëqËLÒïærðgð¤æ~á¦å�Ìrá1Ò
ó¡ÓU�3ÓäË3èLÖdã�`²ð÷æ~á<æ~ËqÈ'á�æ~ë3ËLÒ�ærð
Ô¦ÇqÈ=Ñ1á¦íPâ3Ô�æ~è~á1Ìrâ3ÇqÓ£Ñ+Ñ1ædá¦È~ÖPÌrËLÒ@ãZÚ&á�æ~ë3ËLÒmÕ�ð¤æ~á<Ô¦Ç3È�ôHÌ~Ñ��På²ÌDá�ÒPÕ<ó¡ÓU�3ÓäË3èLñ
Æ�ÇPë3ÕZÖHÓäÔ=å+æ~ëqÍ£Ò á¦È��dë3Óäá¦ÈXÌrÔ&ÍäÈZÌrÕ�Ô=à-`S�¡Ñ1í3Ñ1ÍäÈ�Õ.æDð'ÍiÌrÔ¦È0ËLÑ1í@ð÷æ~á.ÌXÕ�Ó´Ëqè~ÍäÈ�È�ËLÑ�á¦íPâ3Ô¦ÓäædË�ñ�q3ëqá¦Ô¦ÇqÈ�á¦ó@æ~á¦ÈdÖ
ÓäÔ�ÓäÕ'îdÈ�á¦í�ÒPÓùì%Ñ1ë3ÍäÔ�Ô¦æ;á¦ë3Ë	ó¡æ~á�È=Ô�ÇLÌrË@æ~Ë3È.æ~á�ÔJå+æXô3Íäæ3Ñ��:Õ�Ô�Ç3á¦ædë3è~Ç�Õ�ëLÑ�Ç ÌXÒqÌrÔ�ÌDâLÌrÔ�Ç�ñ

µa¶RÏ ÐaÑ�Ò<Ò{»ÔÓ:Ñ�Õ�Ö¬×{Ø	Ù�ÚAÒ�ÓDÛ
ÎÜ�&öJÕ¦Íäæråµâ3ÓäâLÈ�ÍäÓäË3È�ÓäÕgÍäÈ�Õ�Õ'Ñ1æ~ó@âLÌ~Ñ�ÔFædË¡×�Î�Ø&Ð;å�Ç3È�Ë�Ñ1æ~ó@âLÌrá�ÈZÒ�Ô�æ�æ~Ô�Ç3È�á'ÌDÍäè~æ~á�ÓäÔ¦Ç3ó@ÕZÖrÒPë3È�Ô�æ�Ô¦Ç3È
È��3âHÈ�Ë3Õ¦È;ærð<î~Ìrá�Ó´ædë3Õ�Ñ1æ~ó@âLædË3È�ËPÔ¦Õ�ÌrËLÒ@Ô�Ç3È��;Õ¦È�âLÌDá�ÌDÔ¦È.á¦ædë3ËLÒ@ÔJíPâLÈ�ÕhñgÆ�Ç3È&ð÷ædá¦å�Ìrá1Ò¡ó@ÓU�mÓäË3è.å+æ~ë3ÍiÒ
á¦È
�~ëqÓ´á�È�à�rgÍäæ3Ñ��3Ø�Î�× Õ�ð÷ædá�Ô¦ÇqÈ%ÐdöJôLæ
��ÇHÌrÍäî~È�Õ;ÌrËLÒ ãZç~Ú´o�|�Æ�Õ�ð÷ædá�Ô¦Ç3È�Íäæ~èdÓiÑrñ�Æ�Ç3È%Ñ�æ~á¦È�å+æ~ë3ÍiÒ
Ý 4�1A#�#G>J��.R=8;<#
0�.<0A9< +���XTY>D(�=80a(G0�0�?@*�W!>+�X,�WX�!.B%�;<#�*�W!0�,�%/#�18(�1�W!2�1A.�;<#�=8 Z>J%Z*8;<>Z.<0VTY#�%D#�=�W!2�E)N@>Z#a�)Þ�O
ßAà��D �9
1�*8>

"�#�*�W!0a%B.<ªG*��X%/.���E�;<2
;BW!.< Bá�?�*�W >+�X,�WX2��X=8 '>Z.<(G0a#�T�F@;�2�;RW!.< �;<2
;BW!.<

à

á¦È
�~ëqÓ´á�È¡á�æ~ë3èdÇ3Íäíêà�rgÍäæ3Ñ��3Ø�Î�× Õ.ð÷æ~á;Ô¦ÇqÈ¡Õ¦ôHæ
��ÖgÞrà�o6|�Æ�Õ;Ô¦æïÕ¦Ô�æ~á¦È@Ô¦Ç3È@Õ¦ë3ôL�~È�íPÕZÖ+É3ãhÚ	o�|³Æ�Õ_Ô�æ
Ñ1ædó¡â3ë3Ô�È�Ø�Ö
ãZç~Úuo6|�Æ�Õ�Ô�æ¡Ñ1æ~ó@â3ë3Ô¦È.×éÖLÌDËLÒïãZçdÚ o6|�Æ�Õ�Ô¦æ¡Ñ�æ~ó¡âqë3Ô¦È�ogÖ3âqÍ´ëqÕ=ÌrË,Ì~Ò3ÒmÓ´Ô�Óäæ~ËLÌDÍFãhÉ8�
o�|³Æ�Õ.Ô¦æ,Ñ1æ~ó@â3ë3Ô�Èmr&Ö�Ý.Ö
ÌrËLÒpâ;ÖHð÷ædá�Ì@Ô¦ædÔ�ÌrÍ<æDð�ã
�~ç8�xo�|³Æ�Õ�ÌDËLÒ	à�r�Íäæ3Ñ<�3Ø³Î�×�Õ&ð÷ædá�Ô�Ç3È¡Ñ1ædá¦È~ñ
Æ�Ç3È�ÊLËLÌDÍFó@ÓU�mÓäË3è;å+æ~ë3ÍiÒ�á�È��dë3Óäá¦ÈXÌrË3ædÔ¦Ç3È�á.à�rgÍäæ3Ñ��mØ³Î�×�Õ�ÌDËLÒ�ãhç~Úuo6|�Æ�Õ&ð÷æ~á.Íäæ~èdÓiÑrÖPð÷ædá�Ì@Ô¦ædÔ�ÌDÍ
ærð_ãhÚ�rgÍäæ3Ñ��mØ³Î�×�Õ;ÌrËLÒïË3ÈhÌrá¦Íäí ãZÉS�8��o�|³Æ�ÕZñ,Æ�ÇqÈXË:ëqóXôLÈ�á�ærð�àrö<o�|�Æ�Õ�Ó´Õ�á¦ÈZÌDÕ¦æ~ËHÌrô3ÍäÈ~Ö<ô3ëqÔ�Ô¦Ç3È
ÍiÌrá�è~È;Ë:ëqóXôLÈ�á.æDð²ÐdöJôLæ
�êá�È1ð÷È�á�È�ËLÑ1È0Õ¡Ìrá¦È¡Ì�Ñ1ædË3Õ¦ÓiÒPÈ0á�ÌrôqÍ´ÈXÈ��mâHÈ�Ë3Õ�È~Ö<ó%Ì��PÓ´ËqèXÔ¦Ç3ÓäÕ.Óäó¡â3ÍäÈ�ó@È�ËPÔ�ÌrÔ�Óäæ~Ë
â3á�æ~Ç3Óäô3ÓäÔ¦ÓäîdÈ=æ~Ë,ÒPÈ0î:ÓiÑ1È0Õ=å�ÓäÔ¦Ç3ædë3Ô+Í´æ3Ñ�ÌDÍ
ó¡È�ó@æ~á�Ó´È0ÕgÔ¦æXë3Õ�È.ð÷ædá'Ô�Ç3È_ÐdöJôLæ
�3È�Õhñ
õJË�æ~á�ÒmÈ�á�Ô¦æXá�ë3Ë�Ô¦Ç3È�Ñ1È�ËPÔ�á�ÌrÍ<Ñ1æ~á�È�ÌrÔ=Ì;ÒPÈ�Õ¦Óäá�ÈZÒ,É8�;×,ò³ú~ÖPÓäÔ�å'ædë3ÍiÒ;â3á¦ædôLÌrô3ÍäíXôHÈ.Ë3ÈZÑ1È�Õ�Õ�ÌDá¦í,Ô�æ

á¦ëqË,ÓäÔ�ÞhöJÕ¦Íäærå�ãrÖqå�ÓäÔ¦Ç,Ô�Ç3È.ð÷ædá¦å�Ìrá�Ò	ÌrËLÒ�ôHÌ~Ñ��På²ÌDá�Ò�ó@Ó!�3ÓäË3èdÕgá¦ë3ËqË3ÓäË3è��#Õ¦ÍäæråUÆ�ÇqÓ´Õ&å'ædë3ÍiÒ@á¦È��dë3Óäá¦È
ã�vdÚ_Ñ�ímÑ�Í´È0Õ�ærðFÍiÌDÔ¦È�ËLÑ�í¡Ô¦æ;È�ËLÑ�á¦íPâ3Ô�Ì�Õ¦ÓäË3èdÍäÈ=ô3Íäæ3Ñ��jÖPôqë3Ô�å'ædë3ÍiÒ;â3á¦æ3ÒPëHÑ1È�æ~ËqÈ�ôqÍ´æ3Ñ��XÈ�îdÈ�á¦íïãZÞ;Ñ1ÍäæmÑ��
Ñ1í3Ñ1ÍäÈ�Õhñ
Æ�Ç3È¡ôqÓ´èdè~È�Õ�Ô�â3á�æ~ô3ÍäÈ�ó å�ÓäÔ�Ç�×�Î�Ø&ÐïÓ´Õ�Ô¦Ç3È@Ë:ëqó¡È�á�æ~ë3Õ�á�È1ð÷È�á�È�ËLÑ1È0Õ¡Ô¦æ	Ô¦Ç3È@Í£ÌDá¦èdÈ¡ÐdöRr�æ
�3È�ÕZñ	õ¤ð

Ì@ôLÌrËHÒPå�ÓiÒPÔ¦ÇPöJæ~á�ÓäÈ�ËPÔ¦ÈZÒ	Óäó¡â3ÍäÈ�ó@È�ËPÔ�ÌrÔ�Óäæ~Ë¡ÓäÕ�ÒPÈ�Õ�Óäá¦ÈZÒ
Ö\Ô¦ÇqÈXË:ëqóXôLÈ�á&ærð=Ðdö<rgæ
�êá�È1ð÷È�á�È�ËLÑ1È0ÕXôLÈZÑ�æ~ó¡È0Õ
î~È0á¦í�È��3âLÈ0Ë3Õ¦Óäî~Èdñ'Æ�ÇqÈ �~Ú;ô3ÓäÔhÖ3ó¡æ3ÒPëqÍ´æ;Ú��)�&óXë3ÍäÔ¦Óäâ3ÍäÓäÈ�ágÓäÕ�È��3âLÈ0Ë3Õ¦Óäî~ÈdÖLôqë3Ô=Ë3ædÔ�â3á¦ædÇ3Óäô3ÓäÔ¦Óäî~È0Í´íXÕ�Íäærå�ñ
q\ÓäËLÌrÍäÍäí:ÖdÔ¦ÇqÈ_Ú;î~Ìrá�Ó£ÌDô3ÍäÈ=á�æ~Ô�ÌDÔ¦Óäæ~ËqÕ=Ìrá¦È.ó@æmÒmÈ�á�ÌDÔ¦È�ÍäíXÈ��3âHÈ�Ë3Õ¦ÓäîdÈ_ædâLÈ�á1ÌrÔ�Ó´ædË3ÕZñ�Æ�Ç3È�ô3Óäèdè~È�Õ�Ô�È��3âLÈ�ËqÕ¦È
ÓäÕ�Ô¦Ç3È�Ô¦Ç3á�È�È_ÒPÓùø
È�á¦È�ËPÔ&á¦æ~ëqËLÒ�ÔJíPâLÈ0Õ�n'ÌDÍäÔ¦Ç3ædë3è~Ç@Ë3æ~Ô=ÌXÑ1ædËLÑ1È�á�Ë,ð¤æ~á�Ì;Õ¦ærð¤ÔJå²ÌDá¦È.Óäó¡â3ÍäÈ�ó@È�ËPÔ¦æ~áhÖrÓäÔ�ÓäÕ
Ì;Õ¦ÓäèdË3ÓùÊjÑ�ÌrËPÔ+ÇLÌrËHÒPÓiÑ�Ìrâ@ð÷ædá'ÇLÌDá�ÒPå�Ìrá�È�ÒPÈ�Õ¦ÓäèdË3ÕZñ

µa¶Zä »åØ�æ
Ø�Ý�Þ�ë3Õ¦È�Õ.ædâLÈ�á1ÌrÔ�Ó´ædË3Õ�å�Ç3ÓiÑ�Ç�Ö3å�ÇqÓ´ÍäÈ.ÓäË3È��3âHÈ�Ë3Õ¦ÓäîdÈ�ÓäË Ì�ó¡æ3ÒPÈ0á¦Ë�ó¡ÓiÑ1á�æ~â3á�æmÑ�È�Õ¦Õ�æ~áZÖHÌrá�È�ó¡æ3ÒPÈ�á1ÌrÔ�È�Íäí
È��3âHÈ�Ë3Õ¦ÓäîdÈ%ÓäËéÇLÌDá�ÒPå�Ìrá�È~ñïÎç�~Ú ô3ÓäÔZÖ<ó¡æ3ÒPëqÍ´æ,Ú����;óXëqÍ´Ô�Óäâ3ÍäÓ´È0á=á¦È
�~ëqÓ´á�È,É3ãZÚ´o�|�Æ�ÕhÖgÌrËLÒµÌ	�~Ú ô3ÓäÔ
á¦ædÔ�ÌDÔ¦æ~á�å+æ~ëqÍ£Ò;á�È��dë3Óäá¦È¡ãhÞ8�{o�|³Æ�Õ�Ô¦æXÌ~Ñ�Ñ1ædó¡â3ÍäÓäÕ¦Ç\ñ�ò�ærå+È�î~È0áZÖ3Ô�Ç3È�á�È�ÓäÕ²Ì;Ë3ÓiÑ1È�ÌDô3ÓäÍ´ÓäÔJí�Ô�æXÔ¦á1Ì~ÒPÈ.ærø
âHÈ�áJð÷ædá¦ó�ÌrËLÑ1È&ð÷ædá²ÌDá¦ÈZÌ;ÓäË�Ô¦ÇqÓ´Õ=ÒmÈ�Õ¦Óäè~Ë\ñ

¿6ÀYèDÀ+Á éëê�ì'ì
Æ�Ç�ê�í
È
î�ï�ð�ñGì'ÇLò
Æ�Ç3ÈXó@æ~Õ¦Ô.Õ�Ô¦á�ÌDÓäè~ÇPÔJð÷ædá¦å�Ìrá1Ò
Ö�Ñ1ædó¡âLÌdÑ1Ô.Ó´ó@â3ÍäÈ�ó¡È0Ë:Ô1ÌrÔ�Ó´ædË�ærð=Ø�Ý�Þ¡ÓäÕ_Ì@Õ�Ó´Ëqè~ÍäÈXá¦ædë3ËLÒ
Ö<Ý�öBÕ�Íäærå�ÓäóXö
â3ÍäÈ�ó@È�ËPÔ�ÌrÔ�Óäæ~Ë�ñXÆ�ÇqÈXÓ´ËqÓ´Ô�ÓiÌrÍgÌrËLÒ	ÊHËLÌrÍ
�dÈ�íPÕ_Ìrá�È¡ôHÈ�Õ¦Ô;Õ¦Ô�æ~á�ÈZÒéÓäËïá¦È�èdÓ´Õ�Ô¦È�á�ÕZÖ�å�Ç3ÓäÍ´È;Ô¦ÇqÈ¡á¦È0ó%ÌrÓäË3ÓäË3è
�~È0í:Õ�å+æ~ëqÍ£Ò�ÊHÔ�Ó´ËïãZÚS`�o�|³Æ�ÕZñgÆ�ÇqÈ�×	|ks=È�Õ&æ~Ë¡Ô�Ç3È.Õ¦Ô1Ìrá¦Ô�æDð�Ô¦Ç3È.â3ÓäâHÈ�ÍäÓäË3È{z÷Ô¦æ;Õ¦È0Í´ÈhÑ1Ô=ôHÈ�ÔJå+È�È�Ë�Ô¦Ç3È
ÓäË3â3ë3Ô�ÌrËHÒXÔ¦ÇqÈ�á�È�Õ¦ëqÍ´Ô+ð¤á¦æ~óVÔ�Ç3È.â3á¦È�îPÓäæ~ëqÕ�á¦æ~ëqËLÒ�}�á¦È��dë3Óäá¦ÈXãhÚ8`{o�|�Æ�ÕhÖ3ÌrËLÒ#Ô¦Ç3È.ÓäË3â3ëqÔ²ÌDËLÒXædë3Ô¦â3ëqÔ
å�Ç3ÓäÔ¦È0Ë3ÓäË3è_ÈhÌ~Ñ�Ç,á¦È
�~ëqÓ´á�È_Þràuo�|³Æ�ÕZñ
Æ�Ç3È;â3ÓäâLÈ�ÍäÓäË3È�ð÷æ~á&Ô¦Ç3È;á¦ædë3ËLÒ	ÓäÔ¦Õ¦È0Ífð+å'ædë3ÍiÒ�Ë3È�ÈZÒïÉ3ãhÚ�o6|�Æ�Õ&ð÷æ~á&ÈZÌ~Ñ�Ç�qµð÷ë3ËHÑ1Ô¦Óäæ~Ë	Ô¦æ�âLÈ0áJð÷ædá¦ó

Ô¦ÇqÈ��~Ú@ô3ÓäÔ�óXëqÍ´Ô�Óäâ3ÍäÓ´Ñ�ÌDÔ¦Óäæ~Ë�ñ�Æ�Ç3È¡î~ÌDá¦ÓiÌrôqÍ´È�á¦æ~Ô1ÌrÔ�Ó´ædË3Õ�á�È��dë3Óäá¦ÈêãhÞ8��o�|³Æ�Õ�ô3ë3Ô;Ñ�ÌrËµôLÈ¡Ñ1ædóXô3ÓäË3ÈZÒ
å�ÓäÔ¦Ç@Ô¦Ç3È�s��.Ø æ~âHÈ�á�ÌDÔ¦Óäæ~Ë\Ö3ÌrËLÒ#ÈZÌ~Ñ�Ç�ærð<Ô¦Ç3È.Õ¦ëqô��~È�í�Ì~Ò3ÒmÓ´Ô�Óäæ~Ë3Õ+á¦È��dë3Óäá�È�Õ��dÚ o6|�Æ�ÕZñ�ó Ç3È�Ë,Ì~Ò3ÒmÈZÒ
Ô¦æ	Ô¦Ç3ÈXÇLÌDá�ÒPå�Ìrá�È¡á�È��dë3Óäá¦ÈZÒÃð÷æ~á.óXëA�3ÓäË3è¡âqÍ´ëqÕ�Ô¦Ç3ÈXÓäË3ÓäÔ�Ó£ÌDÍgÌrËLÒ	ÊLËHÌrÍ�Ì~Ò3ÒPÈ0á¦ÕZÖ<Ô�Ç3ÈXÔ¦ædÔ�ÌDÍ²Ñ1ædó¡È�Õ.Ô�æ
á¦ædë3è~ÇqÍ´í,ãhç8�S� o6|�Æ�Õ+ð÷ædá�Ô¦Ç3È.â3ÓäâHÈ�ÍäÓ´ËqÈ~ñ
õJÔ�Õ¦Çqæ~ë3ÍiÒïÔ�Ì��~È���Ñ1í3Ñ1ÍäÈ�Õ;Ô¦æ,âHÈ�áÜð÷æ~á�ó Ô�Ç3È�q ð÷ë3ËLÑ1Ô�Óäæ~Ë�Ö<ÌrË3ædÔ¦Ç3È0á_Ñ1í3Ñ1ÍäÈXð÷ædá.Ô¦Ç3È@á¦æ~Ô1ÌrÔ�Ó´ædË�Ö�ÌDËLÒ

Ì;ÊHËLÌrÍ<Ñ1í3Ñ1ÍäÈ�ð÷ædá�Ô¦Ç3È;Õ¦ëqô��~È�íïÌ~Ò3ÒPÓäÔ�Ó´ædË�ÖPÕ¦ëqè~è~È0Õ¦Ô¦ÓäË3è�Ô�ÇLÌrÔ.ÌXÉhöJÕ¦ÍäæråUâqÓ´âHÈ�ÍäÓäË3È�å+æ~ë3ÍiÒ@ôHÈ_Õ�ëPì%Ñ1ÓäÈ�ËPÔZñ
Æ�Ç3ÓäÕ=å+æ~ëqÍ£Ò á¦È��dë3Óäá¦È�ã��dÚ¡Ñ1í3Ñ1ÍäÈ�Õ�Í£ÌDÔ¦È�ËHÑ1í�Ô¦æ�â3á¦æ3ÒPëHÑ1È¹Ì#á¦È�Õ�ë3ÍäÔ�ô3ë3Ô&å'ædë3ÍiÒ�ôHÈ¹ÌDô3ÍäÈ�Ô¦æ�â3á�æmÒmëLÑ1ÈXÌ
á¦È0Õ¦ë3ÍäÔ=È0î~È�á�í%Ú8�XÑ�ímÑ�Í´È0ÕZñ

¿6ÀYèDÀ�ô ï�Ç�õ�ÌbÊ�Å�ËSîbÍ�Ê�ì+ö<ð<Æ�Ç�ê�íVÈVî�ï�ð�ñGì'ÇLò�È�É�ñGÃ'÷�í
Æ�Ç3È�á�È_Ìrá�È.Õ¦æ~ó@È=Ô�á¦ÓiÑ��:Õ&å�Ç3ÓiÑ�Ç%Ñ�ÌDË%ôHÈ�ë3Õ�ÈZÒ@ð÷ædá²Ì;ó@æ~á�È�Ñ1ædó¡âLÌdÑ1Ô²Ø�Ý�Þ;ÒPÈ�Õ�Óäè~Ë�ñgÐPÓäËLÑ�È�ôHæ~Ô�Ç�Õ¦ÓiÒPÈ�Õ
ærð'Ì;á�æ~ë3ËLÒ	Ìrá¦È�Ó£ÒmÈ�ËPÔ¦ÓiÑ�ÌrÍJÖPÔ�Ç3È�Óäó¡â3ÍäÈ�ó@È�ËPÔ¦È�á+Ñ1æ~ë3ÍiÒ�ôqë3ÓäÍ£Ò@ÌXÇLÌDÍùðiöBá�æ~ë3ËHÒ
Ö3Ý�öBÕ�Íäærå7Óäó¡â3ÍäÈ�ó@È�ËPÔ�ÌrÔ�Óäæ~Ë
å�Ç3ÓiÑ�Ç7ð¤æ~ÍiÒPÕ¡Ô�Ç3ÈïÔJå'æ ÇLÌDÍ´îdÈ�Õ¡Ô�æ~èdÈ�Ô¦Ç3È0áZñ Æ�Ç3ÓäÕ�á¦æ~ëqè~Ç3Íäí7Ñ1ë3Ô�Õ,Ô¦Ç3Èïá¦È0Õ¦æ~ëqá�Ñ1Èµá¦È��dë3Óäá¦È0ó¡È�ËPÔ¦Õ,ÌDËLÒ
ôLÌDËLÒPå�ÓiÒPÔ¦Ç@ÓäË¡ÇLÌDÍfð1Ö3ÌrËLÒ@Ì~Ò3ÒPÕ�Ô�Ç3á¦È0È_Ñ1í3Ñ1ÍäÈ�Õ�ærð<ÍiÌrÔ¦È0ËLÑ1í¡âHÈ�á�á�æ~ë3ËLÒ@ÓäË¡ædá�ÒPÈ0á=Ô¦æ;È��LÑ�ÇLÌrËqè~È�ø³ÌDËLÒ�ù
ÌrËHÒ;Ô¦æ;âLÈ�áÜð÷æ~á�ó Ô¦ÇqÈ=È��LÑ�ÇLÌrËqè~È�ÌDÔ'Ô�Ç3È=È0ËLÒXæDð�ÈZÌ~Ñ�Ç¡á�æ~ë3ËHÒ
ÖPå�ÓäÔ¦Ç¡ÌrË¡ÌdÒ3ÒPÓäÔ¦ÓäÔ�æ~ËLÌDÍLÑ1í3Ñ1ÍäÈ.ærð�âLÌdÒ3ÒPÓäË3è
Ô¦æ�Óäó¡âqÍ´È0ó¡È�ËPÔ=Ì@á¦ædë3ËLÒ	Ó´ËéÌrËéÈ0î~È�ËéËPë3óXôHÈ�á=æDð³Ñ�Í´æ3Ñ��,âHÈ�á¦Óäæ3ÒPÕhñ¡õJËéÌ�Ñ�ÌrÕ�È¡å�Ç3È�á�ÈXôLÌrËHÒPå�ÓiÒPÔ¦ÇïÓäÕ
ÌrÕ;Óäó¡âHæ~á�Ô�ÌrËPÔ.ÌrÕ;Í£ÌDÔ¦È�ËHÑ1íéå�Ç3ÓäÍäÈXá¦È�Õ�æ~ë3á1Ñ1È�Õ%ÌDá¦È@Ç3ÈZÌhîPÓäÍ´íéÑ1ædË3Õ¦Ô�á�ÌrÓäË3ÈhÒ
Ö<Ô¦Ç3ÓäÕ;Ô¦ÈZÑ�Ç3ËqÓú�dë3È�å+æ~ë3ÍiÒ	ôLÈ
Õ¦ÓäèdË3ÓùÊjÑ�ÌrËPÔ�Í´íXâqá¦È1ð÷È0á¦ÈZÒ�ærîdÈ�á=Ì;ó¡ÓiÑ1á�æ3Ñ1æ3ÒPÈZÒ¡ÒqÌrÔ�ÌDâLÌrÔ�Ç�ñ
û F@;�2�;RW!.< D>Z#@;�#�?a,�*8>'.65
98��;<2
;BW!.6>'#a;�#�?a,�*8>Z.D\ 98��>Z#a;<#�?a,�*8>Z.Dß�9�(�=80���;�2�;RW!.b>Z#�;<#�?a,�*8>Z.�>+�8.6=8.<"���(�WX*8.<

#�T�C�98K69�(�=80a3

É

Æ�Ç3È'ÌdÒ3ÒPÓäÔ¦Óäæ~ËHÌrÍ~Ñ1ædÕ¦Ô¦Õ<æDðmÕ�ëLÑ�Ç_Ì�Ò3ÌDÔ�ÌrâHÌrÔ¦Ç;Ìrá¦È�æ~Ë3È<È��3Ô¦á1Ì=Ñ1í3Ñ1ÍäÈ�ð÷æ~á
ÈhÌ~Ñ�Ç�Õ¦å�Ìrâ;ÌrËLÒ&æ~ËqÈ'Ñ1í3Ñ1ÍäÈ<ð÷ædá
âLÌdÒ3ÒPÓäË3èLÖDó%Ì��PÓäË3è+Ô¦Ç3È�âqÓ´âHÈ�ÍäÓäË3Èa`höJÕ¦Íäærå ÌDËLÒ�ëqâ3ÓäË3è.Ô¦Ç3È�ÍiÌrÔ�È�ËLÑ1í�Ô¦æXãZÞDà�Ñ�ímÑ�Í´È0ÕZÖPÌrËLÒ�Ô¦Ç3È�ôHÌrËLÒPå�ÓiÒPÔ�Ç
á¦ÈhÒPëLÑ1ÈZÒ	Ô¦æ@æ~Ë3È.ô3Íäæ3Ñ���È�î~È�á�í�à-�XÑ1í3Ñ1ÍäÈ�Õhñ�Æ�Ç3ÓäÕ�ÌDÍ´Íäærå�Õ+Ô¦Ç3È;Ñ1æ~á�È_Ô�æXôLÈ_ÌDÍäó¡æ~Õ�Ô²Ñ�ë3Ô=ÓäË�ÇLÌrÍùð�ÖPÔ�æ�`dç8�
o�|³Æ�ÕZÖqå�Ó´Ô�Ç%ÌDË3æ~Ô�Ç3È�á��~Ú{o�|³Æ�Õ�Ô¦æ;Õ¦Ô�æ~á¦È�Ô¦Ç3È.á¦È0ó%ÌrÓäË3ÓäË3è�Õ¦ë3ô��dÈ�íPÕZñ<Î&Í´Õ�æLÖ3ÌDË ÌdÒ3ÒPÓäÔ¦ÓäædËLÌrÍHà-�{o�|³Æ�Õ
Ìrá�È�á¦È
�~ëqÓ´á�ÈZÒ@ð÷ædá�î~Ìrá�Ó´ædë3Õ�×	|as&È�ÕZÖ
ÌrËHÒ¡Ô�Ç3È�Õ�ë3ô��~È0í%Õ�Ô¦ædá�ÌrèdÈ�ÌrËLÒ@å�Ç3ÓäÔ¦È0Ë3ÓäË3èXá¦È�ó�ÌrÓäË¡ëqËLÑ�ÇLÌrË3èdÈZÒ
ñ
Æ�ÇPë3ÕZÖqÔ¦Ç3È�Ñ1ædÕ¦Ô&ærðFÕ�ëLÑ�ÇêÌrË@Óäó¡â3ÍäÈ�ó@È�ËPÔ�ÌrÔ�Óäæ~Ë;å'ædë3ÍiÒXôHÈ�á�æ~ë3èdÇ3Íäí�v~ÉS� o6|�Æ�ÕZñ

µa¶Zµ »¼ü!ýAÕ�Ö�þ�ÿ�Ò
Ø�Ó ß1ËHÒ3ÌrÈ�ÍB� Õ+Ë:ëqóXôLÈ�á+ærðgá�æ~ë3ËLÒmÕ=ÒPÈ�âHÈ�ËLÒPÕ.æ~Ë�Ô�Ç3È��~È0í¡Õ¦Óäú�Èdñ¢qqæ~á�Ô�Ç3ÓäÕ=ÌrËLÌDÍäí:Õ�ÓäÕ'ôHæ~Ô�Ç,Ô¦Ç3È.ô3Íäæ3Ñ��%ÌDËLÒ
�~È0í¡Õ¦Óäú�ÈXÌrá�ÈXãZÚ8`;ôqÓ´Ô�ÕZñ�Ø�Ó ß1ËHÒ3ÌrÈ�Í
ÇHÌrÕ=Ì;Ç3Óäè~Ç,ÒPÈ0è~á¦È0È_æDð­âHÌrá�ÌDÍäÍ´È0Í´ÓäÕ�óêÖrå�ÓäÔ¦Ç�îdÈ�á¦í�Õ¦Çqæ~á¦Ô&æ~âHÈ�á�ÌDÔ¦Óäæ~ËqÕ
ÌrËHÒ%Ì�Õ¦ó�ÌrÍäÍHË:ëqóXôLÈ�á+ærð<á¦ædë3ËLÒPÕhÖ3å�Ç3ÓiÑ�Ç¡ó�Ì��~È0Õ'ÓäÔ+æ~Ë3È.ærð<Ô¦Ç3È�ðBÌrÕ�Ô¦È�Õ�Ô=Ñ�ÌrËLÒmÓ£ÒqÌrÔ¦È0Õ�ð÷ædá²Ì;ÇLÌDá�ÒPå�Ìrá�È
Óäó¡â3ÍäÈ�ó@È�ËPÔ¦È�áhñ
Æ�Ç3È%× Ó!�Pö¦Ñ1æ~Íäë3ó@Ë�æ~âHÈ�á�ÌDÔ¦Óäæ~ËéæDð�Ø�Ó ß1ËLÒ3ÌDÈ�Í<å'ædë3ÍiÒ,á�È��dë3Óäá¦È�`	o�|³Æ�Õ.ð÷æ~á�Ô¦Ç3È�Ì~Ñ�Ñ1ëqóXë3ÍiÌrÔ¦ÓäædË,ærð

ÈZÌdÑ¦ÇXôPíPÔ¦ÈdÖ~å�ÓäÔ¦Ç;ÈZÌdÑ¦ÇXóXëqÍ´Ô�Óäâ3ÍäÓ£Ñ0ÌrÔ¦ÓäædË=â3á�æ~ôLÌDô3Íäí�á¦ÈZÒmëLÑ�ÌrôqÍ´È&ÓäË:Ô�æ�`�o6|�Æ�Õ<Õ¦Óäó@Ó´ÍiÌDá�Ô¦æ.Ô�Ç3È�Ô¦ÈZÑ�Ç3ËqÓú�dë3È
ÓäË,ÙX�0ÛÜñ\Æ�ÇPë3ÕZÖdÔ¦ÇqÈ=È�ËPÔ¦Óäá�È=ó¡ÓU�_Ñ1ædÍ´ëqó¡Ë�ð÷æ~ágædË3È��~Ú$öBôqÓ´Ô<å+æ~á1Ò;å'ædë3ÍiÒ;â3á¦ædôLÌrô3Íäí�á�È��dë3Óäá¦È&æ~ËXÔ¦ÇqÈ=æ~á1ÒPÈ�á
ærð�ã��S��àDöRo6|�Æ�ÕZñ
Î�á�æ~ë3ËLÒ&æDðqØ³Ó ß1ËLÒ3ÌDÈ�Írá¦È��dë3Óäá�È�Õb`ar�ÍäæmÑ��3Ø�Î.×�Õ
Ô¦æ&Õ¦Ô�æ~á¦È�Ô¦Ç3È'Ð:öBôHæ
�3È�ÕHð÷æ~á
Ô�Ç3ÈgôPíPÔ¦ÈgÕ�ë3ô3Õ�Ô¦ÓäÔ¦ë3Ô�Óäæ~ËD~��rÖ

Ë3æ_ÌDá¦ÈZÌ�ð÷ædágÔ¦Ç3È&á¦ærå7Õ�Ç3Óùð÷Ô¦ÓäË3è.ædâLÈ�á1ÌrÔ�Ó´ædË�Ö;à-�S��o�|³Æ�Õgð÷ædágÔ¦ÇqÈ=à_Ñ1ædÍäë3ó¡Ë;ó¡ÓU�3È�ÕZÖqãZÚ8`¬o�|�Æ�Õ�ð÷ædágÔ¦Ç3È
�~È0í��3æ~á�Õ'ÌrËHÒ;Ô¦Ç3È�ôPíPâLÌrÕ�Õ¦ÓäË3è�æDðjÔ�Ç3È+ÊLËLÌDÍjÑ�æ~Íäë3ó¡Ë�ó¡ÓU��Ö:ãhÚ8`�o�|³Æ�Õ<ð÷ædágÔ¦Ç3È�ÓäË3âqë3ÔgÕ¦ëqô��~È�íXÌ~ÒqÒPÓäÔ¦Óäæ~Ë
ÌrËHÒ¡âqÓ´âHÈ�ÍäÓäË3È�×´|as=È0ÕZÖ
ÌrËLÒïãhÚ8`{o�|�Æ�Õ�Ô�æXÕ¦Ô�æ~á¦È�Ô¦Ç3È.Õ¦ëqô��~È�íPÕhñ
Æ�Ç3ÈXË3È�Ô�á¦È�Õ�ë3ÍäÔ�ÓäÕ�â3á¦ædôLÌrôqÍ´í,çS`8��o�|³Æ�Õ_ÌrËLÒp`�rgÍäæ3Ñ��3Ø�Î�× Õ.ð÷æ~á�Ì@Õ¦ÓäË3èdÍäÈ_á�æ~ë3ËLÒïÓäó@â3ÍäÈ�ó¡È�Ëmö

Ô�ÌDÔ¦Óäæ~Ë\ñ�ó7ÓäÔ¦ÇêÌ@Ñ1á¦ÓäÔ¦ÓiÑ�ÌDÍgâLÌDÔ¦Ç,æDð�ã�ó¡È�ó@æ~á¦í¡ÌdÑ�Ñ1È�Õ�ÕZÖ
�xo�|�Æ�Õ&ð÷ædá.Ô¦Ç3ÈXÑ1æ~Íäë3ó@Ë�ó¡ÓU�3Ó´ËqèLÖ3ÌrËHÒ,ædË3È
ð÷ædá'Ô�Ç3È.á¦æ~ëqËLÒx�~È�í�Ì~Ò3ÒPÓäÔ�Ó´ædË�ÖPÌ�ædË3È.æ~á+ÔJå'æXÑ1í3Ñ1ÍäÈ.Í£ÌDÔ¦È�ËHÑ1í¡ÓäÕ+á¦ÈZÌDÕ¦æ~ËHÌrô3ÍäÈ&ð÷æ~á=Ì�á¦ædë3ËLÒ
ñ�ó Ó´Ô�Ç¡ædË3Íäí
ã��;á�æ~ë3ËHÒPÕ=æDðFÈ�ËLÑ�á¦íPâ3Ô¦ÓäædË�ÖHÔ¦Ç3ÓäÕ�á¦È0Õ¦ë3ÍäÔ¦Õ.ÓäË,ÌrË�ÓäËLÑ1á�ÈZÒPÓäô3Íäí¡ÍäæråUÚS�XÑ1í3Ñ1ÍäÈ�Õ.ærðFÍiÌDÔ¦È�ËLÑ�í:Öqå�Ó´Ô�Ç,Ì;ô3ÍäæmÑ��
È�îdÈ�á¦íéã��;Ñ1í3Ñ1ÍäÈ�Õhñ
Ø�Ó ß1ËLÒqÌrÈ�Í+âLÈ0áJð÷ædá¦ó¡Õ;Ì�è~á�ÈZÌrÔ�È�áXËPë3óXôLÈ0á�ærð=á�æ~ë3ËLÒmÕ_å�Ç3È0Ë�ë3Õ�ÈZÒµå�Ó´Ô�Ç�Ì,ÍiÌDá¦è~È0á�Õ¦ë3ôL�~È�íPñïÆ�Ç3ÓäÕ

å+æ~ë3ÍiÒ.Ë3ædÔgÌhø
ÈZÑ1ÔgÔ�Ç3È=Ìrá�ÈZÌ&á¦È��dë3Óäá¦ÈhÒ;ô3ë3Ô<å'ædë3ÍiÒ.ÓäËLÑ1á�ÈZÌrÕ�È=Ô¦ÇqÈ'ÍiÌrÔ�È�ËLÑ1íXÌrËHÒ.á¦ÈZÒmëLÑ1È=Ô�Ç3È�ôLÌDËLÒPå�ÓiÒPÔ¦Ç\ñ
ó7ÓäÔ¦Ç,ÚXÑ1Íäæ3Ñ��%Ñ1í3Ñ1ÍäÈ�Õ&ð÷ædá�ÈZÌ~Ñ�Ç�á¦ædë3ËLÒ
ÖHÓäÔ+Ó´Õ&Õ¦Ô�á�ÌrÓäèdÇ:ÔÜð÷æ~á�å²ÌDá�Ò#Ô¦æ¡È��mÔ�á�ÌDâLædÍ£ÌDÔ¦È.Ô¦ÇqÈ_Ñ1æ~Õ�Ô=æDð�Ì;ÍiÌDá¦è~È0á
Õ¦ëqô��~È�íPñ

µa¶�� ½aÿ�����ÿ6Õ	�
ÐPÈ�á�âLÈ0Ë:Ô
� Õ�æ~âHÈ�á�ÌDÔ¦Óäæ~ËqÕZÖ
ôHÈ�ÓäË3è�î~È�á�í�â.ÏgÐdöJÍäÓY�dÈ~Ö3ó�Ìrâ�È��3Ô¦á�È�ó¡È0Í´í	å'È�ÍäÍ<ÓäËPÔ¦æ¡ÇHÌrá�Òmå²ÌDá¦È~ñ.Æ�Ç3ÈXÑ�Ç3æ~ÓiÑ1È
ærð�à�ÓäË3â3ë3ÔhÖ
à�æ~ë3Ô�â3ë3Ô_ÐdöJôHæ
�mÈ0Õ�ÌDÍäÍ´ærå�ÈhÌ~Ñ�Ç�ÐdöJôLæ
�êÔ�æ�æmÑ0Ñ1ë3âPíêædË3Íäí,à�àrö<o�|³Æ�ÕZÖ
å�Ç3ÓäÍäÈ{s���Ø³Õ_Ìrá�È
î~È0á¦í�ÓäË3È��mâHÈ�Ë3Õ�Óäî~È~Ö=ÌDËLÒ Ñ1æ~ËqÕ¦Ô�ÌDËPÔXá¦æ~Ô1ÌrÔ�Ó´ædË3Õ¡ÌrËHÒ�âHÈ�á�óXë3Ô�ÌDÔ¦Óäæ~Ë3ÕXÌrá�È@ð÷á¦È�Èdñ ò³ærå'È0î~È�áhÖ²ÌDÍäÔ¦Ç3ædë3è~Ç
Ô¦ÇqÈ_ÌrÍäè~ædá¦ÓäÔ¦Çqó ÓäÕ=î~È0á¦íXðJÌrÕ¦ÔhÖ
ÌXÑ1æ~Ë3Õ�ÓiÒPÈ�á�ÌDô3ÍäÈ_Ìró@æ~ë3ËPÔ+ærð'Ìrá�ÈZÌXÓäÕ�á�È��dë3Óäá¦ÈZÒ ð÷æ~á�Ô�Ç3È_ÐdöJôHæ
�mÈ0Õ=å�Ç3ÓiÑ�Ç
ó%Ì��~È¡ÐPÈ0á¦âHÈ�ËPÔ¡Õ¦ëqá¦â3á�Ó´Õ�ÓäË3è~Íäí�Ñ1ædÕ¦Ô¦ÍäíµÓ´ËµÇLÌrá1ÒPå�Ìrá¦ÈdÖ'È0î~È�Ë Ô¦Çqæ~ë3èdÇ�ÓäÔ¦ÕXôLÌDÕ¦ÓiÑ@æ~âHÈ�á�ÌDÔ¦Óäæ~ËqÕ¡Ìrá¦È�îdÈ�á¦í
ÓäË3È��3âHÈ�Ë3Õ¦ÓäîdÈ~ñ

¿6À�
DÀ+Á �DÉAÆ�Ì
ÉAí�Ë�
Lð<Æ�Ç�ê�íVÈ:î�
Lð�ñGì'Ç�ò
â&ë3È=Ô�æ_Ô�Ç3È.ËLÌrÔ�ë3á¦È.æDðFÐPÈ�á¦âHÈ�ËPÔ�� Õ.ÐdöBôHæ
�¡ë3Õ�È~ÖPÔ¦Ç3È.Õ�å'È�È0Ô�Õ¦âHæ~Ô+ð÷ædá²Ì�Õ¦È�á�âLÈ0Ë:Ô�Óäó@â3ÍäÈ�ó¡È�ËPÔ1ÌrÔ¦ÓäædË�ÓäÕ'Ô�æ
ë3Ë3á�æ~ÍäÍb`;á�æ~ë3ËHÒPÕZñ&Æ�Ç3È�ÓäË3ÓäÔ¦ÓiÌDÍ�ÌrËLÒ#ÊLËLÌDÍ�âHÈ�á¦óXëqÔ�ÌrÔ�Óäæ~Ë3Õ�á�È��dë3Óäá¦È;æ~Ë3Íäí¡å�Óäá�Ó´ËqèLÖ3Ëqæ~Ô�ÍäæPæ8�Pë3â�Ô�ÌDô3ÍäÈ�ÕZÖ
Õ¦æXÔ�Ç3È.È�ËPÔ¦Óäá¦È;Ñ1æ~Õ�Ô=ÓäÕ'ÓäË�Ô¦ÇqÈ�È0ËLÑ1á¦íPâ3Ô�Óäæ~ËêÑ1ædá¦È~ñ
Î�Õ¦ÓäË3èdÍ´È&á¦ædë3ËLÒXá�È��dë3Óäá¦È�Õ;ãZÚS` o6|�Æ�Õ�ð÷æ~á+Ô¦Ç3È��dÈ�í�s��.Ø�ÕhÖ
ãZÚS` o6|�Æ�Õ+Ô¦æXÕ¦Ô�æ~á�È�Ô�Ç3È.Õ¦ë3ôL�~È�íPÕ+ð÷ædá

Ô¦ÇqÈ=á¦ædë3ËLÒ
ÖHãZÚS`�o�|³Æ�Õgð¤æ~ágÔ�Ç3È�ÐdöJôHæ
�mÈ0ÕZÖ3ÌrËHÒ�ãZÞ8��o6|�Æ�Õ�ð÷æ~ágÍäÓäË3ÈZÌDágÔ¦á1ÌrË3ÕÜð÷æ~á�ó%ÌDÔ¦Óäæ~Ë�Ö$ð÷æ~á'Ì�Ô¦æ~Ô1ÌrÍHærð
Éràdà�o�|³Æ�Õ+ð÷æ~á=Ì;Õ�Ó´Ëqè~ÍäÈ.á¦æ~ëqËLÒ
ñ+õJË,Ì;â3ÓäâLÈ�ÍäÓäË3È~ÖHÌ;Õ�ÌhîPÓäË3è~Õ+ærð'ÞDà�o�|�Æ�Õ�¨rá�æ~ë3ËLÒ	Ñ1æ~ë3ÍiÒ@ôHÈ_Ì~Ñ�Ç3ÓäÈ�îdÈZÒ
ôPí¹Ñ�æ~óXô3ÓäË3ÓäË3è&ÔJå'æ�æDð�Ô¦Ç3È��~È�íus��.Ø³Õ'å�ÓäÔ¦ÇXÔ�Ç3È=ÍäÓäË3ÈZÌDágÔ¦á1ÌrË3ÕÜð÷æ~á�ó%ÌDÔ¦Óäæ~Ë�ð÷á¦ædó�Ô�Ç3È=â3á�È�îPÓäæ~ë3Õ+á¦ædë3ËLÒ
Ö
ÌrÔ�Ô¦Ç3È�Ñ1æ~Õ�Ô_æDð²Õ�æ~ó¡ÈXÒPÈ�Õ�Óäè~Ë Ñ�æ~ó¡âqÍ´È��mÓäÔJíPñuq3ædá_ÌrË `�á�æ~ë3ËHÒïâ3ÓäâLÈ�ÍäÓäË3È~Ö\Ô¦ÇqÈ¡Ô¦ædÔ�ÌDÍ'Ñ1æ~ó@È�Õ�Ô�æ��8`S�8�
o�|³Æ�Õ+ð÷æ~á�Ô�Ç3È.È�ËPÔ¦Óäá¦È�â3ÓäâLÈ�ÍäÓäË3È~ñ
��� ���8.B%B.��! $ Z#�?�.D"�() '>Z.<0�?�.R?�#�%B2D�8.B%B.D0
*8.�>Z#�>J�8.6 J�!��.D#�T->+�8.DC�W!#
;Z&�564�\� <P$^ë=�W!2��8(�WXT-#�T8>+�8.D1��!>Z �(�%B.D();<>+*8(�WXW!2

*8 Z.<0A9�"����!;Z�
�X=80
�!;<()>Z.< S>J�8(G>8�X=a(�>'.�;Z��=8#�W!#)_)2D"��8.R%/.D>+�8.�O)²�O
[GH�1-#�²
.< S(�%/.D0
�X%B.<;�>JW!2ë�X?a,�W!.B?�.R=�>J.�0�>+�8.D(�%B.<(�#
;<;R*�,��!.<0
"�#�*�W!0a1A.b +?�(�WXW!.R%

Þ

ÐPÓäËLÑ1È;ÈZÌ~Ñ�Çïá¦ædë3ËLÒïÑ1æ~Ë3Õ�ÓäÕ¦Ô¦Õ�æ~Ë3Íäí�ærð'ôqÓ´ÔJå�ÓäÕ�È�æ~âHÈ�á�ÌDÔ¦Óäæ~ËqÕ�ÌDËLÒ@Ê��3ÈZÒ	á¦ædÔ�ÌDÔ¦Óäæ~Ë3Õ.å�ÓäÔ¦ÇïÌ¡Ñ1á�Ó´Ô�ÓiÑ�ÌrÍ
âLÌDÔ¦Çéærð=ædË3ÍäíêÉ	o6|�ÆVÈ�î~ÌrÍäëLÌDÔ¦Óäæ~ËqÕZÖ\Ó´Ô�Õ¦Ç3ædë3ÍiÒïôLÈ@â3ÓäâLÈ�ÍäÓäË3ÈZÌDô3ÍäÈ_å�ÓäÔ�Çéæ~Ë3Íäíïæ~Ë3È¡Ñ1í3Ñ1ÍäÈ�¨Dá¦ædë3ËLÒ
ñ	õJÔ
ó%Ìhí�È�îdÈ�Ë�ôHÈ¡âHæ~Õ�Õ¦Óäô3ÍäÈ¡Ô�æêÑ1ædó¡â3ÍäÈ�Ô�È,ã~ñ�É@Ô¦æêÚ�á�æ~ë3ËHÒPÕ_ÓäË�Ì�Õ�ÓäË3è~ÍäÈ¡Ñ1í3Ñ1ÍäÈ~Ö<á�ÈZÒPëLÑ1ÓäË3èïÔ¦ÇqÈ¡ÍiÌrÔ�È�ËLÑ1í
ð÷ë3á�Ô¦Ç3È0áZÖ3Õ�ÓäËLÑ1È.Ô¦Ç3ÓäÕ�Ñ1á¦ÓäÔ�Ó£Ñ0ÌrÍ
âLÌDÔ¦Ç¡ÓäÕ+Õ¦æXÕ�Ç3æ~á�ÔZñ<Æ�ÇPë3ÕZÖPÔ�Ç3È�`�á�æ~ë3ËHÒXâ3ÓäâHÈ�ÍäÓ´ËqÈ=å+æ~ë3ÍiÒXôHÈ=á�ë3Ë	`�Õ�Íäærå�Ö
â3á�æmÒmëLÑ1ÓäË3è¡Ì;á¦È0Õ¦ë3ÍäÔ�È�îdÈ�á¦í�àXÑ1í3Ñ1ÍäÈ�ÕZÖHå�ÓäÔ¦Ç,Ì�Í´ærå Í£ÌDÔ¦È�ËHÑ1í¡æDð:�dÚ_Ñ�ímÑ�Í´È0Õ=Ô¦æXÈ0ËLÑ1á¦íPâ3Ô.Ì�Õ�ÓäË3è~ÍäÈ.ô3Íäæ3Ñ<�
ñ

¿6À�
DÀ�ô �DÉAÆ�Ì
ÉAí�Ë�ñGÃ'í�÷�ì'ÉxÆ�Ç$ê�í
È
Î�Õ�ÓäË3è~ÍäÈ;á¦æ~ëqËLÒ�Óäó¡â3ÍäÈ�ó@È�ËPÔ�ÌDÔ¦Óäæ~ËXå+æ~ë3ÍiÒ�Õ�Ô¦ÓäÍäÍ�Ë3È0ÈZÒ,Ô�æ�Ó´ó@â3ÍäÈ�óXÈ�ËPÔ�ÌrÍäÍ�âHæ~Õ�Õ¦Óäô3ÍäÈ¹Ð:öRr�æ
�3È�ÕZÖ�Ì#å�ÓiÒPÈ
óXëA�3ÓäË3è.Õ¦Ô�È�â�Ô¦æXÑ1æ~óXô3ÓäË3È�Ô�Ç3È.á¦È�Õ�ë3ÍäÔ¦Õ�å+æ~ë3ÍiÒ;ôHÈ�Õ¦Ô&ôLÈ&Óäó¡â3ÍäÈ�ó@È�ËPÔ¦ÈZÒ�å�ÓäÔ¦Ç¡Ô�á¦ÓäÕ¦Ô1ÌrÔ�È�ôqëPøjÈ0á¦ÕZñ�Æ�ÇPë3ÕZÖ
ã��dÚrà�o�|�Æ�Õ.å+æ~ë3ÍiÒ�ôHÈ;á¦È��dë3Óäá¦ÈhÒ�ð÷ædá.Ô¦Ç3ÈXÐdö<rgæ
�3È�ÕhÖ�Ú~ÉdÞ�o�|³Æ�Õ.Ô¦æ�Õ¦Ô�æ~á¦È;Ô¦ÇqÈ_á�æ~ë3ËLÒ	Õ¦ëqô��~È�íPÕhÖ'ãhÚ8`
o�|³Æ�Õgð¤æ~á+Ô¦Ç3È��~È�íus��.Ø�ÖPÌrËHÒ,ãZÞS�&ð÷ædágÔ¦Ç3È.ÍäÓäË3ÈZÌDágÔ¦á1ÌrË3ÕÜð÷æ~á�óêñ
Æ�Ç3È.á�È�Õ¦ë3ÍäÔ�Ó´Ëqè_Õ�Ó´Ëqè~ÍäÈ1öJá¦æ~ëqËLÒ;Óäó¡â3ÍäÈ1ö
ó¡È0Ë:Ô1ÌrÔ�Ó´ædË_å+æ~ëqÍ£Ò�á¦È
�~ëqÓ´á�È_ãhÞ8�8��o6|�Æ�ÕZñ<Æ�ÇqÓ´Õ�ÌrÍäÕ�æ�ÓäËPÔ¦á�æ3ÒPëLÑ1È�Õ�ædË3È�ó¡ædá¦È+È�î~ÌrÍäëLÌDÔ¦Óäæ~Ëxz÷Ô�Ç3È=óXë¯�mÓäË3è
ærð<Ô¦Ç3È;ÐdöBôHæ
�3È�Õ�Ô¦æXÕ�È�ÍäÈZÑ1Ô&Ô¦Ç3È_Ñ�æ~á¦á�ÈZÑ1Ô&æ~Ë3È�}+ÓäËPÔ¦æXÔ�Ç3È�Ñ1á¦ÓäÔ�Ó£Ñ0ÌrÍ�âHÌrÔ¦Ç\ñ
õ¤ð�â3ÓäâLÈ0Í´ÓäË3ÈhÒ_ÌDÔgÔ¦Ç3È�Õ1Ìró@È'á1ÌrÔ¦È=ÌDÕ<Ô¦Ç3È�`höJá¦æ~ëqËLÒ�îdÈ�á¦Õ�Óäæ~Ë�ÖdÔ¦Ç3ÓäÕgå+æ~ëqÍ£Ò�â3á¦æ3ÒPëLÑ�È�Ì.á�È�Õ¦ë3ÍäÔgÈ0î~È�á�ím�dÚ

Ñ1Íäæ3Ñ��¡Ñ1í3Ñ1ÍäÈ�ÕZÖPå�ÓäÔ¦Ç�ÌrËXÓiÒPÈ�ËPÔ�Ó£Ñ0ÌrÍHÍ£ÌDÔ¦È�ËHÑ1íXærðb�dÚ�Ñ1í3Ñ1ÍäÈ�ÕZñ+ÐPÓäËLÑ1È&Ô¦Ç3ÓäÕ+æ~Ë3Íäí;á¦È�â3á�È�Õ¦È0Ë:Ô�Õ�Ì�à-����Õ�ÌhîPÓäË3èdÕ
ÓäË%ÌDá¦ÈZÌ�ô3ë3Ô=ÌDË�`hö¤ð÷ædÍ£Ò�á¦ÈhÒPëLÑ1Ô�Ó´ædË�Ó´Ë@ôLÌrËHÒPå�ÓiÒPÔ¦Ç�ÖPÔ�Ç3ÓäÕ'ÓäÕ+Ë3æ~Ô�Ì�ôLÈ�ËqÈ1ÊjÑ1ÓiÌrÍ\Ô¦á1Ì~ÒPÈ�æDø,Ó´Ë@ó¡ædÕ¦Ô'Ñ�ÌDÕ¦È�Õhñ

µa¶Zæ �´Û�Ó���Ú��
Æ�å+ærÊLÕ�Ç%å+æ~á��PÕ=å+È�ÍäÍ�ÓäË�ÇLÌrá1ÒPå²ÌDá¦È�å�ÓäÔ�Ç3æ~ë3Ô�á�È��dë3Óäá¦ÓäË3èXó@È�ó¡ædá¦í;Ô¦æXÓäó¡â3ÍäÈ�ó@È�ËPÔ'ÐdöJôLæ
�3È�Õhñ+Æ�Ç3æ~ë3èdÇ
ÓäÔ=ÓäÕ�Ë3ædÔ=Ô¦ÇqÈ�ðBÌDÕ¦Ô�È�Õ¦Ô.æ~á�Ô�Ç3È;ó¡æ~Õ�Ô=Ñ1æ~ó@âLÌ~Ñ�ÔZÖ3ÓäÔ�ÓäÕ=á�ÈZÌrÕ�æ~ËLÌDô3Íäí�Õ¦ó%ÌDÍäÍjÌDËLÒ�ÇLÌDÕ=æ~Ô�Ç3È�á�Ì~Òmî~ÌrËPÔ�ÌDè~È�ÕhÖ
ÓäËLÑ1ÍäëLÒPÓäË3è�Ì�Ë3ÓiÑ1ÈXÌrá�ÈZÌ8¨DâLÈ�áÜð÷æ~á�ó%ÌDËLÑ1ÈXÔ¦á1Ì~ÒPÈ0ærø ÌDËLÒ	Ô¦Ç3È¡ÌDô3ÓäÍ´ÓäÔJí�Ô¦æ�âHÈ�áJð¤æ~á¦ó È�ËLÑ1á�íPâ3Ô¦Óäæ~Ë�ÌDËLÒéÒPÈ1ö
Ñ1á�í:âqÔ¦Óäæ~Ë�å�ÓäÔ¦Ç,Ì�Õ¦ÍäÓäè~ÇPÔ¦ÍäíXó¡æ3ÒPÓùÊLÈhÒ;â3ÓäâLÈ�ÍäÓäË3È~ñ
Æ�Ç3È+ô3ë3ÓäÍiÒPÓäË3è'ôqÍ´æ3Ñ��=æDðLÆ�å+ærÊLÕ�Ç�ÖhÔ¦Ç3È���ð÷ë3ËHÑ1Ô¦Óäæ~Ë\ÖZó�Ìrâ3Õ
á�ÈZÌrÕ�æ~ËLÌDô3Íäí=å+È�ÍäÍ~Ô�æ�q�w y ÎµÍ´ædè~ÓiÑrñ�Ï�Ì~Ñ�Ç

� âLÈ�á�óXë3Ô�ÌDÔ¦Óäæ~Ë@á¦È��dë3Óäá�È�Õ�Úrà�o�|³Æ�Õ�Ô¦æXÓäó¡âqÍ´È0ó¡È�ËPÔZÖdÓäËPÔ¦È�èdá�ÌrÔ�ÈZÒ@å�ÓäÔ¦Ç�Ô¦Ç3È;ÐdöBôHæ
���dÈ�í�s��.Ø³Ó´ËqèLÖdð÷ædáÌ@Ô¦ædÔ�ÌrÍ�ærð²ÚS`8`�o�|³Æ�ÕZñXÆ�Ç3È¡Ñ�á¦ÓäÔ¦ÓiÑ�ÌDÍgâLÌrÔ�ÇêÓäÕXãZÚ�o6|�Æ�È0î~ÌrÍäëLÌrÔ�Óäæ~Ë3ÕhÖ
Õ¦Ç3ædá¦Ô�È0Ë3æ~ë3èdÇêÔ�æ�È��3âLÈZÑ�Ô_Ô�æ
Óäó¡â3ÍäÈ�ó@È�ËPÔ<Ó´Ë,Ì�Õ¦ÓäË3èdÍ´È�Ñ1í3Ñ1ÍäÈ~ñ
Æ�Ç3È�×	â.Ð y ÌDÍäæ~ÓäÕgó%ÌDÔ¦á�Ó!�;óXë3ÍäÔ¦Óäâ3ÍäÓiÑ�ÌrÔ�Ó´ædË_ÌrÍäÕ�æ_ó�Ìrâ3ÕgîdÈ�á¦í@å'È0Í´ÍJñ+ÙX�0Û�Õ¦Ç3ærå�Õ+Ç3ærå7Ô�Ç3È.óXë3ÍäÔ¦Óäâ3ÍäÓùö

Ñ�ÌDÔ¦Óäæ~Ë,ôPí����
�� Ñ�ÌDËêôHÈ_Óäó@â3ÍäÈ�óXÈ�ËPÔ¦ÈZÒ@ÓäË�`xo�|�Æ�ÕhÖ�ÌrËHÒ�Ô¦Ç3È;óXë3ÍäÔ¦Óäâ3ÍäÓiÑ�ÌDÔ¦ÓäærË¡ôPí����� é á�È��dë3Óäá¦È�Õ
v�o6|�Æ�Õhñ�õJÔ.á¦È��dë3Óäá¦È0Õ�Ì¹ð÷ë3á�Ô¦Ç3È�á�`�o6|�Æ�Õ=Ô�æ%ÌdÒ3Ò�ÈZÌdÑ¦Çïæ~ëqÔ¦â3ë3Ô&Ô¦ædè~È�Ô�Ç3È�áZñ&Æ�Ç3È;Ë3È�Ô&á¦È�Õ�ë3ÍäÔ�ÓäÕ&Ô¦ÇLÌDÔ
Ô¦ÇqÈ�ó�ÌrÔ�á¦ÓU�_á¦È
�~ëqÓ´á�È�Õ_ã
�~É{o�|³Æ�Õ'Ô�æ¹Ñ1ædó¡â3ëqÔ¦È~ÖPå�ÓäÔ¦Ç�Ì_Ñ�á¦ÓäÔ¦ÓiÑ�ÌDÍ
âLÌrÔ�Ç¡ærð
� o6|�Æ�ÕhÖ3ÌrÍäÍäærå�Ó´Ëqè�ÓäÔ+Ô¦æ;ôLÈ
Ñ1ædóXô3ÓäË3ÈZÒXå�ÓäÔ�Ç¡Ô¦ÇqÈ wgò�Æ�ñ

¿6À�!DÀ+Á "«ò�Ç�#@ñGÍ�ñ)ÃZí�÷$ìZÉuÆ�Ç$ê�í
È
ÎVÕ¦ÓäË3èdÍ´È�á¦æ~ëqËLÒ,å+æ~ëqÍ£Ò@á�È��dë3Óäá¦È�`ràPÞ�o6|�Æ�Õ&ð÷æ~á&Ô¦Ç3È;ÔJå+æ$�	ð÷ë3ËHÑ1Ô¦Óäæ~ËqÕZÖ
ÌrË3ædÔ¦Ç3È0á�ÞDà�o6|�Æ�Õ&ð÷æ~á&Ô¦Ç3È
wgò³Æ�Ö~Þrà�o�|³Æ�ÕgÔ¦æ.Õ�Ô¦æ~á�È�Ô¦Ç3È�Õ�ë3ô��dÈ�íPÕZÖ3Þrà�o�|³Æ�Õ<ð÷æ~á<Ô�Ç3È�Õ¦ë3ôL�~È�íXÌ~Ò3ÒmÓ´Ô�Óäæ~Ë�ÖrÌrËHÒXÞrà�ð¤æ~á<Ô¦Ç3È�Õ�ë3ô��dÈ�í
s��.Ø�ÓäË3èHñ'Î ÊHËLÌrÍ<Ú~É~Þuo6|�Æ�Õ.Ìrá¦È;á¦È
�~ëqÓ´á�ÈZÒ@ð÷ædá=Ô�Ç3È�å�Ç3ÓäÔ¦È0Ë3ÓäË3èXÕ¦Ô�È�â3ÕZÖûá¦È�Õ�ë3ÍäÔ¦ÓäË3è¡ÓäË�á¦ædë3è~ÇqÍ´íïã��dÞ8�
o�|³Æ�Õ+ð÷æ~á�Ô�Ç3È.È�ËPÔ¦Óäá¦È�â3ÓäâLÈ�ÍäÓäË3È~ñ
Î�á�ÈZÌrÕ�æ~ËLÌDô3ÍäÈ�È��3âLÈhÑ1Ô�ÌDÔ¦Óäæ~Ë,å+æ~ëqÍ£Ò#ôLÈ�ð÷æ~á�Ô�Ç3ÓäÕ=á¦ædë3ËLÒ@Ô¦æ@Ô�Ì��~È��XÑ1í3Ñ1ÍäÈ�ÕZÖHædË3È.ð÷ædá�Ô¦Ç3È_Ð:öBôHæ
�3È�ÕZÖ

æ~ËqÈ�ð÷ædágÔ¦Ç3È.×	â.ÐXÌrËLÒuw�ò�Æ�ÖPÌrËLÒ;ædË3È�ð÷ædágÔ¦ÇqÈ��~È0í¹ÌdÒ3ÒPÓäÔ¦Óäæ~Ë¡ÌDËLÒ{s��.Ø�~�~ZñPÐPëLÑ�Ç%Ì�â3ÓäâLÈ�ÍäÓäË3È�å+æ~ë3ÍiÒ
Ô�Ì��~È.à-`;Ñ1í3Ñ1ÍäÈ�Õ&Ô¦æXÈ�ËLÑ�á¦íPâ3Ô�Ì;Õ�ÓäË3è~ÍäÈ=ôqÍ´æ3Ñ��
ÖPâ3á¦æ3ÒPëHÑ1ÓäË3è¡Ì;ô3Íäæ3Ñ<�@È�î~È0á¦íêãhÞXÑ1í3Ñ1ÍäÈ�ÕZñ

¿6À�!DÀ�ô "«ò�Ç�#@ñGÍåö<Ç$ìBÈ6É¯È
o
Ó��dÈ¹Ø�Ý�ÞqÖ
Ô¦Ç3ÈXÕ�íPó¡ó¡È0Ô¦á¦ÓäÈ�Õ&ÓäËéÆ�å'æDÊLÕ¦ÇéÌrÍäÍäærå�Ô¦Ç3ÈXâqÓ´âHÈ�ÍäÓäË3ÈXÔ¦æ�ôHÈ;ð÷æ~ÍiÒPÈhÒ,ÓäËïÇLÌrÍùð�ñ;Æ�Ç3ÓäÕ�å+æ~ë3ÍiÒ
á¦È
�~ëqÓ´á�È¡ÌrËéÌ~Ò3ÒmÓ´Ô�Óäæ~ËLÌDÍ­Ñ�ímÑ�Í´ÈXÔ�æ,ÒPæ�Ô¦Ç3È�wgò³Æ�Ö
ôHÈZÑ�ÌrëqÕ¦È¡Ô�Ç3È¡×	â.Ð	å'ædë3ÍiÒ�Ë3È�ÈZÒ Ô¦æ�ôHÈXÕ¦â3ÍäÓäÔ.æ~ë3ÔhÖ
ÌrÕ&å'È0Í´ÍgÌDÕ�Ì~ÒqÒPÓäÔ¦Óäæ~ËLÌDÍ
Íäæ~è~ÓiÑ³ð÷ædá=Ô¦ÇqÈmwgò³Æ�æ~âHÈ�á�ÌDÔ¦Óäæ~Ë\ñ=Æ�Ç3ÓäÕ&å'ædë3ÍiÒ�á¦È��dë3Óäá�È_àPÚ8�uo�|³Æ�Õ&ð÷æ~á�Ô�Ç3È%�
ð÷ë3ËHÑ1Ô¦Óäæ~Ë\ÖLÞrà�o6|�Æ�Õ³ð÷æ~á�Ô�Ç3È wgò³Æ�~R�DÖLÞrà�o6|�Æ�Õ&Ô¦æXÕ¦Ô�æ~á�È�Ô¦Ç3È�Õ¦ë3ô��dÈ�íPÕZÖ�ÌDËLÒ�Þrà�o6|�Æ�Õ=Ô�æXâLÈ0áJð÷ædá¦ó
�B� K�(�%'%Z�!.< �#�={Q�7��V4�
>Z.B=80�>Z#�,�%/#�,8()_)()>Z.6TY() Z>'.R%b>+�8.B= >+�8.� J*�?�9S1�*8>6�XT$�!>��! V=8.<;<.� ' Z(�%B2�>Z#�0�.��).BW!#�,�(�F� Z>Z()_).

,��X,-.RWX�X=8.)9��!>�?a�!_���>�1-.61A.< Z>�>Z#
,�W!();�.�>J�8.6,��X,-.RWX�X=8.D�X=�>+�8.�?a�!0�0
W!.6#�T$>+�8.�;<(�%Z%/2a#�T¯>+�8.�7'&6��(�=80a&�.�2a()0�0
�!>J�!#�=�9� Z#
>+�8()>�>+�8.
��%B Z>b;�2�;RW!.
0�#
.< �>J�8.:W!#�"���E�1��!>Z �#�T�>+�8.
7(&���(�=80�>+�8.:&�.<2�()0�0
�!>J�!#�=�9�(�=80�>+�8.� '.�;<#�=80�;<2
;BW!.:0�#�.� b>+�8.
���!_��a1��!>Z D(�=80�>+�8.�)�^65	#�,-.R%/(G>J�!#�=�Z� TY#�%D(aF�ÞV1��!>D()0�0�.B%D(�=80a>+�8.b(G0�0
�!>J�!#�=8(�W�W!#)_��!;�>Z#@ +���XTY>D#�%D=8#G>D(�=80a>'#� Z.BW!.<;�>D>J�8.6,�%B#�,-.R%��X=�,�*8>

ç

Î&Í´èdæ~á�Ó´Ô�Ç3ó õJó¡â3ÍäÈ�ó@È�ËPÔ�ÌrÔ�Óäæ~Ë o\ÌrÔ�È�ËLÑ1í r+ÌrËLÒmå�Ó£ÒmÔ¦Ç ÐmÓ´ú0È ÐPÓäú�È
zBÑ1í3Ñ1ÍäÈ�Õ�} z÷Õ�ë3ô��dÈ�í�Õ¦È�Ô�Õ�¨~Ñ�ímÑ�Í´È
} z÷àDöRo6|�Æ�Õ�} z/r�ÍäæmÑ��3Ø�Î.×	}

*�È�å ó¡ÓiÑ1á�æ3Ñ1æ3ÒPÈZÒ
×�Î.Ø=Ð Ò3ÌDÔ�ÌrâHÌrÔ¦Ç Ú~çS� ã�¨dÚ~ç8� �S�8� `

Ï6�3Ó´Õ�Ô¦ÓäË3è¡Ò3ÌDÔ¦âLÌDÔ¦Ç
ó¡æ3ÒPÓùÊLÈZÒ Ú~çS� ã�¨dÚ~ç8� ÉS� �

Ø�Ý�Þ ÐPâLÈhÑ1ÓiÌrÍäÓäú�ÈZÒ�Ò3ÌrÔ1ÌrâLÌDÔ¦Ç Ú~ÞDà ã�¨dÚ~Þrà ÚSv8� �
*�È�å�Õ�âLÈZÑ�Ó£ÌDÍäÓ´ú0ÈZÒ

Ø³Ó ß�ËLÒ3ÌrÈ0Í Ò3ÌDÔ�ÌrâHÌrÔ¦Ç �~Þ ã�¨S�~Þ ãhÚ8` Ú
ÐPÇLÌrá�ÈZÒ,ÐdöJôHæ
�mÈ0Õ �~Þ ã�¨S�~Þ ãhÞ8� �

ÐPÈ0á¦âHÈ�ËPÔ `;Õ�Í´ærå�Ö�`�á¦ædë3ËLÒ �~Ú ã�¨Dà Ú8�dÞ8� �
Ú;Õ�Í´ærå�Ö3Ú�á¦ædë3ËLÒ �~Ú ã�¨qãZÞ ãZÉS�8� �

Æ�å+ærÊLÕ�Ç ÐPÇLÌDá¦ÈZÒ�ò+ö¤ð÷ë3ËHÑ Ú8� ã�¨dÚ8� ÉqãZÚ �
ÐmÈ�âLÌrá1ÌrÔ�È_ò+ö¤ð÷ë3ËLÑ à ã�¨Dà ãZÚdÞ8� �

q\Ó´èdë3á¦È�ÚLnFÝ+ædó¡âLÌDá�ÌrÔ�Óäî~È�âHÈ�áJð÷ædá¦ó�ÌrËLÑ1È�ÌDËLÒ�Ñ1æ~Õ�Ô�ærðgÕ¦ë3ôL�~È�í@è~È�Ë3È0á�ÌrÔ�Óäæ~Ë

Ô¦ÇqÈXð÷È�ÓäÕ�Ô¦È�Í�Ë3È0ÔJå'ædá<�ps���Ø ÌrËHÒïÔ¦æ,á�æ~Ô�ÌDÔ¦È@Ô¦Ç3È@æ~ë3Ô�â3ë3Ô;Ófð�Ë3ÈZÑ�È�Õ¦Õ1Ìrá¦íPñ7ãhÚ8`�o�|³Æ�Õ_å+æ~ë3ÍiÒïÕ�Ô¦ÓäÍäÍgôLÈ
Ë3È�ÈhÒPÈZÒ ð÷æ~á�ÈZÌ~Ñ�Çéærð=Ô�Ç3È¡å�ÇqÓ´Ô�È�Ë3ÓäË3è,Õ�Ô¦È�âqÕZñ,õJÔ;å+æ~ë3ÍiÒïÌrÍäÕ¦æ,á�È��dë3Óäá¦È�ÌrË�Ì~ÒqÒPÓäÔ¦Óäæ~ËLÌDÍgÑ1í3Ñ1ÍäÈXð÷ædá�Ô¦Ç3È
wgò³Æ�Ö3ÓäË¡ædá�ÒPÈ�á&Ô¦æ¡ÒPÈ0Í£ÌhíXÔ�Ç3È.â3á¦ædâLÈ0á=È�ÍäÈ�ó@È�ËPÔZñ
ÐPëLÑ�Ç%Ì�â3ÓäâHÈ�ÍäÓ´ËqÈ=å+æ~ë3ÍiÒ�á¦È��dë3Óäá¦È.á�æ~ë3èdÇ3Íäím`dç8��o6|�Æ�Õ�ÌrËLÒ#å'ædë3ÍiÒ;á¦È��dë3Óäá¦È.à_Ñ�ímÑ�Í´È0Õ�Ô¦æXÑ1æ~ó@â3ÍäÈ�Ô¦È

ÈZÌdÑ¦ÇéôqÍ´æ3Ñ��
Ö
ÓäËLÑ1á�ÈZÌrÕ�Ó´Ëqè,Ô¦Ç3ÈXÍiÌDÔ¦È�ËLÑ�íêÔ�æ ÞDà,Ñ1í3Ñ1ÍäÈ�ÕZÖgÌDËLÒïá¦ÈZÒmëLÑ1ÓäË3è,Ô�Ç3ÈXôLÌrËHÒPå�ÓiÒPÔ¦ÇïÔ¦æ,ædË3È;ô3ÍäæmÑ��
È�îdÈ�á¦í	�~Ú;Ñ1í3Ñ1ÍäÈ�Õhñ

+ ,�Â�þ�- ��¦ §{��½��.¿
�.¾+ÅZÀX½

Î=ÍäÔ�Ç3æ~ë3èdÇéÕ¦ë3ôL�~È�íéèdÈ�Ë3È�á1ÌrÔ¦ÓäædËéÓ´Õ�Ë3æ~Ô_ÌDÍäå²ÌhíPÕ.æ~ËéÔ�Ç3È%Ñ1á�ÓäÔ¦ÓiÑ�ÌrÍ+âLÌDÔ¦Ç�Ö<ÓäÔ�ÓäÕ�ó�Ìhí%ôHÈ¡ËqÈZÑ1È�Õ�Õ�Ìrá�í�Ô�æ
ÒPæ@Ô¦Ç3È�Õ�ë3ô��dÈ�í�È��3âLÌrË3Õ�Óäæ~Ë,å�ÓäÔ¦ÇqÓ´Ë�Ô�Ç3È_ÒPÈ�îPÓiÑ1È~Öûærð÷Ô�È�Ë,ÌrÕ�Ì#ó¡ÓiÑ1á�æmÑ�æmÒmÈZÒ�Ò3ÌrÔ1ÌrâLÌDÔ¦Ç�æ~á.Ñ1ë3Õ¦Ô�æ~ó@Ó´ú0ÈZÒ
Íäæ~èdÓ£ÑDñêÐPædó¡È¡Ìrâqâ3ÍäÓ£Ñ0ÌrÔ¦ÓäædË3ÕZÖ\ÍäÓY�dÈXâLædÓäË:ÔÜöBæDðiöJÕ�ÌrÍäÈXÔ�È�á¦ó@Ó´ËHÌrÍäÕZÖ\ó%Ìhí,á1Ìrá�È�Íäíéæ~á;È�î~È�áXËqÈ�ÈZÒµÔ¦æéÑ�ÇLÌrË3èdÈ
Ô¦ÇqÈ�Óäá��~È0í:ÕhÖ
ÓäË�å�Ç3ÓiÑ¦ÇïÑ�ÌrÕ�È_Õ�ë3ô��~È0í,è~È�ËqÈ�á�ÌDÔ¦Óäæ~Ë,ÓäÕ�Ë�� Ô�ÌXâqá¦Óäæ~á�Ó´ÔJí�ÌrËLÒ	Ñ�ÌrË,ôHÈ;âLÈ�áÜð÷æ~á�ó¡ÈZÒ@È��3Ô�È�á¦ËLÌDÍ
Ô¦æXÔ�Ç3È�ÒPÈ�îPÓiÑ1È~ñ
Î=â3âqÍ´ÓiÑ�ÌDÔ¦Óäæ~ËqÕFÕ�ëLÑ�Ç¡ÌrÕgÌrË;È�ËLÑ�á¦íPâ3Ô¦ÓäË3è�âLÌ~Ñ��~È0Ôgá¦ædë3Ô¦È�á�æ~á'ÒPÓäÕ��_Ñ1æ~ËPÔ�á¦æ~ÍäÍäÈ�á<ó%Ìhí.á�È��dë3Óäá¦È=Ñ�ÇLÌrËqè~ÓäË3è

Õ¦ëqô��~È�íPÕ&æ~ËêÌ;âLÌdÑ��~È�ÔÜöBôPídöBâHÌ~Ñ��~È�Ô&æ~á�ô3Íäæ3Ñ��döBôPídöBôqÍ´æ3Ñ��¡ôHÌrÕ¦ÓäÕhñgõJË,Õ�ëLÑ�ÇêÌrâ3âqÍ´ÓiÑ�ÌDÔ¦Óäæ~ËqÕZÖPÔ¦ÇqÈ��~È�í�Õ�È�Ô¦ë3â
Ô¦Óäó@È_ÌrËLÒïâHÌrá�ÌDÍäÍ´È0Í´ÓäÕ�ó)ó%Ìhí�â3á¦ærîdÈXÔ¦æ�ôHÈXÔ¦Ç3È�Ñ1á¦ÓäÔ¦ÓiÑ�ÌDÍ<ðBÌdÑ1Ô¦ædáZñ@Î=ËïÓ´ó@âLædá¦Ô1ÌrËPÔ�Ñ1ædË3Õ¦ÓiÒPÈ0á�ÌrÔ�Óäæ~Ëïð÷ædá
ÇLÌDá�ÒPå�Ìrá�È=Óäó¡â3ÍäÈ�ó@È�ËPÔ�ÌDÔ¦Óäæ~Ë3Õ\ÓäÕ'Ç3ærå Ìrè~ÓäÍäÈ�Ô¦ÇqÈ��dÈ�íXÕ�Ñ�Ç3ÈhÒPë3ÍäÓäË3è_ÓäÕhñ
rgÈ�ÓäË3èXÌrôqÍ´È&Ô¦æ;â3ÓäâLÈ0Í´ÓäË3È�Õ�ë3ô��dÈ�í
è~È0Ë3È�á�ÌDÔ¦Óäæ~Ë7ÌDÔ_Ô�Ç3È�Õ�Ìró@È¡á1ÌrÔ¦È,ÌDÕXÈ�ËLÑ1á�í:âqÔ¦Óäæ~Ë7ÌrÍäÍäærå�Õ�Õ�ë3ô��~È0í:ÕXÔ�æéôLÈ�èdÈ�Ë3È�á1ÌrÔ¦ÈhÒ7Ñ1æ~ËHÑ1ë3á¦á�È�ËPÔ¡Ô�æ
È�ËLÑ�á¦íPâ3Ô¦ÓäædË�ñ

*�ædÔ¦È~Ö�Ô�Ç3æ~ëqè~Ç�Ö+Ô¦ÇHÌrÔ¡Ø�Ó ß1ËHÒ3ÌrÈ�Í=ÌDËLÒ ÐPÈ�á�âLÈ�ËPÔ�ÌrÍäÍäærå Ñ1æ~ËHÑ1ë3á¦á�È�ËPÔ��~È�íPÕ�Ñ�Ç3ÈhÒPë3ÍäÓäË3èéæ~Ë3ÍäíµÓ´ËµÔ¦Ç3È
È�ËLÑ�á¦íPâ3Ô¦ÓäædË ÒPÓäá¦ÈhÑ1Ô¦Óäæ~Ë\Ö�Ë3ædÔ.ð÷ædá�ÒmÈZÑ1á¦íPâ3Ô�Óäæ~Ë�ñ�Æ�Ç3È0Õ¦È,Ñ1Óäâ3Ç3È�á�Õ_á�È��dë3Óäá¦ÈXÕ�æ~ó¡È¡ÌdÒ3ÒPÓäÔ¦ÓäædËLÌrÍ<ô3ëPø
È�á�Ó´Ëqè
ð÷ædá�Ô¦ÇqÈgÈ��3âLÌrËHÒPÈZÒ�Õ¦ë3ô��dÈ�íPÕ\ð÷æ~á<ÒPÈZÑ1á�í:âqÔ¦Óäæ~Ë�ÖDå�Ç3ÓiÑ¦Ç�å'ædë3ÍiÒ=ó�Ì��dÈFÒPÈZÑ�á¦íPâ3Ô¦ÓäædË_ÍiÌrÔ�È�ËLÑ1í&ð÷ædáFÌ&Ñ¦ÇHÌrË3èdÈZÒ
�~È0í¡Ô¦æXôHÈ�ÒPÓùøjÈ0á¦È�ËPÔ=Ô�ÇLÌrË�Ô�Ç3È.È�ËLÑ1á�í:âqÔ¦Óäæ~Ë,ÍiÌDÔ¦È�ËLÑ�íXð÷ædá=Ì_Ñ�ÇLÌDË3è~ÈZÒx�dÈ�í:ñ
Æ�Ç3È�ÓiÒPÈZÌDÍmÑ0ÌrÕ¦ÈdÖ~å�Ç3ÓiÑ�Ç�ædË3Íäí�æ3Ñ�Ñ�ë3á¦ÕgÓäË;Æ�å'æDÊLÕ¦Ç\ÖrÓäÕ�Õ¦ëqô��~È�íPÕgå�ÇqÓ£Ñ�ÇXÑ�ÌrË;ôHÈ'èdÈ�Ë3È�á1ÌrÔ¦ÈhÒ;Ó´ËHÒPÈ�âHÈ�ËPö

ÒPÈ�ËPÔ�Í´íPñ\Æ�Ç3ÓäÕ'ÌrÍäÍäærå�Õ<È�ËLÑ1á�í:âqÔ¦Óäæ~Ë,ÌrËHÒXÒPÈZÑ1á�í:âqÔ¦Óäæ~Ë@Õ¦ë3ô��dÈ�íPÕ'Ô�æ�ôHÈ=è~È0Ë3È�á�ÌDÔ¦ÈZÒ@ædËXÔ¦Ç3Èk�LíXá¦È�èPÌrá1ÒPÍäÈ�Õ¦Õ
ærðgå�Ç3È0Ô¦Ç3È�á&Ô¦Ç3È;Ò3ÌrÔ1Ì;Ó´Õ�ôHÈ�ÓäË3èXÈ�ËHÑ1á¦íPâ3Ô�ÈZÒ,ædá�ÒPÈhÑ1á¦íPâ3Ô�ÈZÒ
ñ�Æ�Ç3ÓäÕ�ÓäÕ=Ì;è~á�ÈZÌrÔ=ÌdÒPî~ÌrËPÔ1Ìrè~È&ð÷ædá=ÒPÈ�îPÓiÑ1È�Õ
å�Ç3ÓiÑ�Ç�Ë3È�ÈZÒ�Ô�æ_È0ËLÑ1á¦íPâ3Ô�ÌDËLÒ¡ÒPÈhÑ1á¦íPâ3Ô.Ì;Í£ÌDá¦èdÈ�ËPë3óXôHÈ�á+ærðgÒPÓùøjÈ�á�È�ËPÔ¦Íäí��dÈ�í~ÈhÒ�ô3Íäæ3Ñ<�PÕhñ
õJËêèdÈ�Ë3È�á1ÌrÍJÖ
Ô�Ç3È¡Ò3ÌrÔ1ÌrâLÌDÔ¦Ç,å�ÓäÍäÍ<æ~Ë3Íäí�ôHÈ¹ÒPÈ0Õ�Ñ1á�Ó´ôHÈZÒÃð÷æ~á.Ì��dÈ�íPÕ¦Óäú�È;ærð�ãZÚS`XôPíPÔ¦È�ÕhÖ
Óùð'Ô¦Ç3È0á¦È¡ÓäÕ.Ì

Õ¦ÓäèdË3ÓùÊjÑ�ÌrËPÔ�ÒPÓùøjÈ0á¦È�ËLÑ�È_ÓäË�Ô¦Ç3È.â3ÓäâHÈ�ÍäÓäË3È.Õ¦Ô¦á�ëLÑ1Ô�ë3á¦È�ð÷æ~á�ÒPÓùø
È�á¦È�ËPÔ��~È�í@Õ¦Óäú�È�Õhñ
rgædÔ¦Ç,×�Î.Ø=Ð¡ÌDËLÒ¡Ø�Ý�Þ�ÇLÌhîdÈ�Ñ1ædË3Õ¦ÓiÒPÈ�á1Ìrô3Íäí@Õ¦Íäærå'È0á'Õ�ë3ô��~È0í¡è~È0Ë3È�á�ÌDÔ¦Óäæ~Ë�å�Ç3È0Ë Ñ�æ~ó¡âHÌrá¦ÈhÒ;å�Ó´Ô�Ç

Ô¦ÇqÈ�æ~Ô�Ç3È�á�Ñ�ÌrËHÒPÓiÒ3ÌrÔ�È�ÕZñ.*³È�ÓäÔ¦Ç3È0á�Ñ0ÌrË,ôHÈ�È1ø
ÈZÑ1Ô�Ó´îdÈ�Íäí,â3ÓäâHÈ�ÍäÓ´ËqÈZÒ�æ~á=ÌdÑ�Ñ1È�ÍäÈ�á1ÌrÔ�ÈZÒ
Ö<ÌrËLÒ�ÌrËPí,ÌrÔ�Ô¦È�ó@â3Ô
Ô¦æXÕ�ÓäóXë3ÍäÔ�ÌrËqÈ�æ~ë3Õ�Íäí�â3á¦æ3ÒPëHÑ1È�óXë3ÍäÔ¦Óäâ3ÍäÈ+Õ¦ë3ôL�~È�íPÕ�ð¤æ~á�ÒPÓùøjÈ�á�È�ËPÔ=ÓäË3ÓäÔ¦ÓiÌDÍ$�dÈ�íPÕ�á¦È��dë3Óäá¦È0Õ�ÒPë3âqÍ´ÓiÑ�ÌDÔ¦Óäæ~Ë@ærð
Ô¦ÇqÈ�Õ�ë3ô��dÈ�ídöÜÑ1á�ÈZÌrÔ�ÓäË3è¡ÇLÌDá�ÒPå�Ìrá�È~ñ
Ø�Ó ß1ËLÒqÌrÈ�ÍB� Õ
Õ¦ë3ôL�~È�í�èdÈ�Ë3È�á1ÌrÔ�Ó´ædË_ÓäÕ<Ñ1æ~Ë3Õ�ÓiÒPÈ�á�ÌDô3Íäí�Õ¦Çqæ~á¦Ô�È�á'ÌDËLÒ.Ô�Ì��~È�Õ<ë3â;Ì=Õ�ó%ÌDÍ´Í~ÌDó¡ædë3ËPÔLæDðjÌrá�ÈZÌ3ñ

`

Î=ÍäÔ�Ç3æ~ë3èdÇ.Ó´Ô<Ñ�ÌrË�Ë3æ~Ô\ôLÈ+â3ÓäâLÈ0Í´ÓäË3ÈhÒ
ÖhÓ´Ô\ÓäÕ�Õ¦ó�ÌrÍäÍhÈ�Ë3æ~ëqè~Ç�Ô�æ�ÒPë3âqÍ´ÓiÑ�ÌDÔ¦ÈgÓùðLÕ�ë3ô��dÈ�íPÕ­ÌDá¦È'Ñ�ÇLÌDË3è~ÈhÒ.ærð÷Ô�È�Ë�ñ
Ý+á¦ÈhÌrÔ¦ÓäË3è�Ô�Ç3È¡ÐPÈ�á�âLÈ�ËPÔ;Õ¦ë3ôL�~È�íPÕZÖ\æ~ËéÔ�Ç3È;æ~Ô¦ÇqÈ�á�ÇLÌDËLÒ
ÖûðBÌhî~ædá�Ì@Ç3ÈZÌhîPÓäÍäí,â3ÓäâLÈ0Í´ÓäË3ÈhÒêÒPÈ0Õ¦Óäè~ËéÒPë3ÈXÔ�æ
Ô¦ÇqÈ�Ñ�æ~ó¡âHÌrá�ÌDÔ¦Óäî~È0Í´í;Ç3Óäè~Ç,Ñ1ædÕ¦Ô�æDð­ÌrÍäÍ
Ô�Ç3È_ÐdöJôLæ
�3È�Õhñ
Æ�å'æDÊLÕ¦Ç6� Õa�dÈ�í¡èdÈ�Ë3È�á1ÌrÔ�Ó´ædË,Ñ�ÌrË�Õ¦ÇHÌrá¦È�ÇLÌrá1ÒPå²ÌDá¦È�å�ÓäÔ�Ç¡Ô¦ÇqÈ�È�ËLÑ1á�íPâ3Ô¦Óäæ~Ë�â3ÓäâHÈ�ÍäÓäË3È~Ö3ÓùðgÌ�ÍäæråUÑ1ædÕ¦Ô

Óäó¡â3ÍäÈ�ó@È�ËPÔ�ÌDÔ¦ÓäærË�ÓäÕ�á¦È
�~ëqÓ´á�ÈZÒ
ñ\Î=ÍäÔ¦È0á¦ËLÌDÔ¦Óäî~È�ÍäíPÖ�ÓäÔ
ó%Ìhí=Ñ�æ~ËPÔ�ÌDÓ´Ë.ÓäÔ�� Õ
ærå�Ë_Ñ�æ~âPí=æDðmÔ�Ç3È'ÐdöJôHæ
��Íäædè~ÓiÑ�ÌDËLÒ
è~È0Ë3È�á�ÌDÔ¦È@Ô¦Ç3È@Õ¦ë3ô��dÈ�íPÕ_Ñ1ædËLÑ1ë3á�á¦È�ËPÔ¦Íäíµå�Ó´Ô�ÇêÈ0ËLÑ1á¦íPâ3Ô�Óäæ~Ë�Ö<È�Õ�Õ¦È�ËPÔ�Ó£ÌDÍäÍ´íïÈ�ÍäÓäó¡ÓäËLÌDÔ¦ÓäË3è¡ÌrÍäÍ<Ô¦ÇqÈ¡ÍiÌrÔ�È�ËLÑ1í
ÓäËPî~æ~ÍäîdÈZÒXÓäË¡Õ�ë3ô��dÈ�í%Ñ1á�ÈZÌrÔ�Óäæ~Ë�ñ

�@¶�· ¸º¹¼»¾½
Æ�Ç3È¡×�Î.Ø=ÐïÕ�ë3ô��~È0íêèdÈ�Ë3È�á1ÌrÔ¦ÓäædËéÓ´Õ�ôLÈ�Õ�Ô_Óäó@â3ÍäÈ�ó¡È�ËPÔ�ÈZÒ�ÓäËÃÌ	Ñ1ë3Õ¦Ô�æ~ó�ó¡ÓiÑ1á�æ3Ñ1æ3ÒPÈZÒéÒ3ÌDÔ�ÌrâHÌrÔ¦Ç\ñXõ¤ð
Õ¦ëHÑ¦Ç ÌêÒqÌrÔ�ÌDâLÌrÔ�ÇéÓäÕ_ë3Õ�ÈZÒïð¤æ~á;È�ËLÑ1á�í:âqÔ¦Óäæ~Ë�Ö�Ô¦Ç3È@ÓäËLÑ1á¦È0ó¡È�ËPÔ�ÌDÍ²Ñ�æ~Õ¦Ô;ærð=Õ�ë3ô��dÈ�í�èdÈ�Ë3È�á1ÌrÔ¦ÓäædËéÓ´Õ;ó¡Óùö
Ë3ædáZÖrß1ë3Õ�Ô�Ì;ðJÌrÓäá�ÌDó¡æ~ëqË:Ô+ærð+È��3âLÌrËLÒmÈZÒêÑ�æmÒmÈ_å�ÓäÔ¦Ç,ÌDÍ´Í\ÓäËLÒPÈ��3È�Õ.á¦ÈhÑ�ÌrÍiÑ1ë3ÍiÌDÔ¦ÈZÒ
ñ.Æ�ÇqÈ_ædË3Íäí%Ì~ÒqÒPÓäÔ¦Óäæ~Ë
å+æ~ë3ÍiÒ@ôLÈXÌXÍäædè~ÓiÑ�ÌrÍ
Õ�Ô¦á�ëLÑ1Ô¦ëqá¦ÈXÔ¦æ�Ñ1æ~ó@â3ë3Ô�È0/21	á¦È��dë3Óäá¦ÓäË3è@Õ¦ædó¡ÈXã��S�uo�|�Æ�Õ.Ô�æ%Ì~Ñ0Ñ1æ~ó@â3ÍäÓ´Õ�Ç�ñ+õ¤ð'Ì
ó¡ÓiÑ1á�æ3Ñ1æ3ÒPÈZÒXÒ3ÌDÔ�ÌrâHÌrÔ¦ÇXÓäÕgËqæ~Ô+ë3Õ¦ÈZÒûÖPÈ�Õ¦Õ�È�ËPÔ¦ÓiÌrÍäÍäí_Ô�Ç3È�ð¤ë3ÍäÍ3ó¡ÓiÑ1á�æmÑ�æmÒmÈZÒXÒ3ÌrÔ1ÌrâLÌDÔ¦Ç;ð÷á�æ~óVÔ¦ÇqÈ=È�ËLÑ�á¦íPâPö
Ô¦ÓäædË¹ÒPÈ0Õ�Ñ1á�Ó´âqÔ¦Óäæ~Ëxz÷Õ1ÌrË3ÕgóXëqÍ´Ô�Óäâ3ÍäÓ´È0á�}�Ö0å'ædë3ÍiÒ.ôHÈ�Ë3ÈZÑ1È�Õ�Õ�ÌDá¦íPÖPá¦æ~ëqè~Ç3Íäí �S�8��o6|�Æ�ÕgÌrËHÒ `�r�Í´æ3Ñ��3Ø�Î.×�ÕZÖ
ÌrËHÒ¡á�æ~ë3èdÇ3Íäí¡Ú~çS�_Ñ1í3Ñ1ÍäÈ�Õ&Ô¦æXèdÈ�Ë3È�á1ÌrÔ¦È�Ô¦Ç3È.Õ¦ëqô��~È�íPÕhñ

�@¶RÏ »åØ�æ
Æ�Ç3È.Ø�Ý�Þ�Õ�ë3ô��~È0íXè~È�Ë3È0á�ÌrÔ�Óäæ~Ë¡ÓäÕ+â3á¦ædôLÌrôqÍ´íXôHÈ�Õ�Ô�Ó´ó@â3ÍäÈ�óXÈ�ËPÔ¦ÈhÒ�å�ÓäÔ¦Ç�Ì_Ñ�ë3Õ¦Ô�æ~ó Ò3ÌDÔ�ÌDâLÌrÔ�Ç�ÖPë3Õ¦ÓäË3è;Ú
r�Í´æ3Ñ��3Ø�Î.×�Õ�Ô¦æ;Õ¦Ô�æ~á¦È�Ô¦Ç3È.Õ¦ëqô��~È�íPÕ.ÒPë3á¦ÓäË3èXÑ1ædó¡â3ë3Ô1ÌrÔ�Ó´ædË�ñ�ÐPÓäËLÑ�È�Ô�Ç3È�ËPë3óXôHÈ�ágæDðFë3Õ�È�á��dÈ�í¡ô3Íäæ3Ñ��PÕ
ÓäÕ=á1ÌrÔ¦ÇqÈ�á=Õ�ó%ÌrÍäÍJÖA�~Úuo�|³Æ�Õ=ë3Õ�ÈZÒïÌrÕ�Ì;Õ�ó%ÌDÍ´Í�Ø³Î�× ÓäÕ=Õ�ëPì%Ñ1ÓäÈ�ËPÔZñ�Ú3ÖD�dÚ;ô3ÓäÔ�á¦È�èdÓ´Õ�Ô¦È�á�Õ�Ñ�ÌrË,Õ�Ô¦ædá¦È43
ÌrËHÒ65XÖPå�ÓäÔ¦Ç��~Ú{o�|³Æ�Õgð÷ædá²Ì;ÒPÈZÒmÓ£Ñ0ÌrÔ¦ÈhÒ%ÌdÒ3ÒPÈ�á�Ô�æ¹ÌDÍäå²ÌhíPÕ'Ñ1ædó¡â3ëqÔ¦È.32785Xñ<Æ�Ç3È&æ~Ë3Íäí¡ÌdÒ3ÒPÓäÔ¦Óäæ~ËHÌrÍ
Íäæ~èdÓ£Ñ�Ô¦æïÑ�ÌrÍiÑ1ë3ÍiÌDÔ¦È93 ÓäÕ_Ú,ÌdÒ3ÒPÈ�á�ÕZÖ<ædË3ÈXÔ¦æ,èdÈ�Ë3È�á1ÌrÔ�È¡Ô¦ÇqÈ¡ÓäË3ÓäÔ¦ÓiÌrÍ<î~ÌDÍ´ëqÈ_æDð=Ô¦Ç3È6:�ÌDá¦á�ÌhíPÖ<ÌrËLÒ	Ô¦Ç3È
Õ¦ÈhÑ1æ~ËLÒ Ô¦æ%ÌdÒ3Ò@Ô¦Ç3È;Ñ1ë3á¦á�È�ËPÔ.î~ÌrÍäë3È=æDðgÔ¦Ç3È;: ÌDá¦á�Ìhí@Ô¦æ93<7=5#ÖLÞrà�o6|�Æ�Õ&Ó´Ë,ÌDÍ´ÍJñ
qqæ~á�ë3â
Ò3ÌDÔ¦ÓäË3è65XÖ
Ô¦ÇqÓ´Õ�á¦È��dë3Óäá¦È0Õ%ãhÞ8��o�|³Æ�Õ.ð÷æ~á�Ô¦Ç3ÈXá�æ~Ô�ÌDÔ¦Óäæ~ËéÌrËHÒ��~Ú�o�|³Æ�Õ�ð÷ædá�ÌrË3ædÔ¦Ç3È�á;Ì~Ò3ÒPÈ0áZñ�Æ�ÇPë3ÕZÖ\Ô¦ÇqÈ¡Ô¦ædÔ�ÌDÍ
Ò3ÌDÔ�ÌrâHÌrÔ¦Ç�å+æ~ë3ÍiÒ#æmÑ0Ñ1ë3âPí%ÚSv8�{o�|�Æ�Õhñ
Æ�Ç3È�Ñ�æ~ËPÔ¦á�æ~ÍHÍ´ædè~ÓiÑ­ð÷æ~ágÔ�Ç3ÓäÕgÕ¦Ô�á¦ëLÑ�Ô¦ë3á�È_Ñ1æ~ËqÕ¦ÓäÕ¦Ô�Õ'ædË3Íäí_æDðûÌ�Ñ�æ~ë3â3ÍäÈ&ærð�Ñ1æ~ë3ËPÔ�È�á¦Õ=ÌDËLÒ;Õ¦ædó¡È+Õ¦Óäó¡â3ÍäÈ

Õ¦Ô1ÌrÔ�È.ð÷æ~á+Ô¦ÇqÈ�Õ¦Ô1ÌrÔ¦È.ó�Ì~Ñ�Ç3ÓäË3È~ÖPÕ�æXÓ´Ô+Õ¦Çqæ~ë3ÍiÒ@Ë3æ~Ô�á�È��dë3Óäá¦È.Õ¦ÓäèdË3ÓùÊjÑ�ÌrËPÔ�á�È�Õ¦ædë3á�Ñ1È0ÕZñ
õJÔ_Õ�Ç3æ~ëqÍ£ÒïôHÈ¡á�ÈZÌrÕ�æ~ËLÌDô3ÍäÈ¡Ô�æ,ë3â
Ò3ÌrÔ�È63 Ó´Ë7ã@Ñ1í3Ñ1ÍäÈ%ÌrÕ;ÓäÔ�æ~ËqÍ´í	á¦È��dë3Óäá¦È0Õ��,Ì~Ò3ÒmÓ´Ô�Óäæ~Ë3Õ�ædá�ÔJå+æ

Ì~ÒqÒPÓäÔ¦Óäæ~Ë3Õ
âqÍ´ëqÕFÌ+ó¡È0ó¡æ~á�í�Íäæ:æS�Pë3â�ÖZÌDËLÒ�Ì�Ñ1ædË3Õ¦Ô1ÌrËPÔ�á�æ~Ô1ÌrÔ¦ÓäædË�ñ�ÐPÓäó¡ÓäÍiÌrá�Íäí:Ö>5 Õ¦Çqæ~ë3ÍiÒ.ôHÈ'Ñ1ædó¡â3ë3Ô1Ìrô3ÍäÈ
ÓäË¡Ì�Õ�ÓäË3è~ÍäÈ=Ñ1í3Ñ1ÍäÈ�ÌDÕ'å+È�ÍäÍJñ�Æ�ÇPë3ÕhÖdð÷æ~á+Ú8�.á�æ~ë3ËLÒ@Ø�Ý�Þ3ÖdÔ¦Ç3ÓäÕ'ÒqÌrÔ�ÌDâLÌrÔ�Ç¡á�È��dë3Óäá¦È�Õ�ã
�~Ú.È��3ÈZÑ�ë3Ô¦Óäæ~ËqÕZÖdð÷ædá
Ú~ÞDà¹Ñ�ímÑ�Í´È0Õ=Ô¦æXèdÈ�Ë3È�á1ÌrÔ�È�Ô¦Ç3È.Õ�ë3ô��~È0í:Õhñ

�@¶Zä »¼ü!ýAÕ�Ö�þ�ÿ�Ò
Ø�Ó ß1ËHÒ3ÌrÈ�ÍB� Õ�Õ¦ëqô��~È�í	è~È�Ë3È0á�ÌrÔ�Óäæ~Ë,ÓäÕ=îdÈ�á¦íïÑ1æ~ó@âLÌ~Ñ1Ôhñ=õJÔ.Ñ�ÌrË	æ~Ë3Íäí�â3á¦æ3ÒPëHÑ1È;ð÷æ~ëqá=ôPíPÔ¦È�Õ.âHÈ�á�Ñ1í3Ñ1ÍäÈ¹ÌDÕ
ÈZÌdÑ¦Çµå'ædá�ÒïÓäÕXÒPÈ�âHÈ�ËLÒPÈ�ËPÔXædËéÔ¦Ç3È@â3á¦È�îPÓäæ~ëqÕ_å+æ~á1Ò
Ö<Õ¦æéÌrËéÓäó¡âqÍ´È0ó¡È�ËPÔ�ÌDÔ¦ÓäærË,å�Ç3ÓiÑ�Ç�Ñ�ÇLÌrËqè~È�Õu�dÈ�íPÕ
ærð¤Ô¦È�Ë�å+æ~ë3ÍiÒXôHÈ�Õ�Ô¦ÓäÍäÍjÒPædó¡ÓäËLÌDÔ¦ÈZÒ#ô:íXÔ�Ç3È�ÍiÌrÔ�È�ËLÑ1í@ærð<Õ¦ë3ô��dÈ�í�è~È�ËqÈ�á�ÌDÔ¦Óäæ~Ë�ñ
ÐPë3ô��dÈ�í¡èdÈ�Ë3È�á1ÌrÔ�Ó´ædË�á¦È��dë3Óäá¦È0Õ=àXÑ1æ~â3ÓäÈ�Õ�æDðFÔ�Ç3È�ÐdöBôHæ
�3È�Õ�ÓäË%Úur�ÍäæmÑ��3Ø�Î.×�Õ�z÷È�ÓäÔ¦ÇqÈ�á=Õ�ÇLÌrá�ÈZÒ@å�Ó´Ô�Ç

Ô¦ÇqÈ,È�ËLÑ1á�íPâ3Ô¦Óäæ~Ë â3ÓäâHÈ�ÍäÓäË3È�æ~áXÓäËLÒPÈ�âHÈ�ËLÒmÈ�ËPÔ�}�Ö&È�Ë3ædë3è~Ç ô3ëmøjÈ�á�ÓäË3èïð÷æ~á,ãhÚ8`Dô�å�ÓäÔ¦Ç7Ì ãZÚS`rôå�~È�íPÖ@�dÚ
o�|³Æ�Õ;ð÷æ~á�Ô¦Ç3È,Ø=Ñ�æ~Ë�Ô1Ìrô3ÍäÈ~Ö+ÌrËLÒå�~Úpo�|³Æ�Õ�ð÷ædá_Ô�Ç3È�î~Ìrá�Ó´ædë3Õ�s��.Ø�Õ¡ÌDËLÒéÕ�È�ÍäÈZÑ1Ô�Ó´ædË3ÕZñ ÐPÓäËLÑ1È@Ô¦Ç3È
ô3ëPø
È�á�Ó´Ëqè¡ÓäÕ=ÒPæ~ó@ÓäËLÌrËPÔZÖdÔ¦ÇqÈ_Ô�æ~Ô�ÌDÍ
å'ædë3ÍiÒ@â3á¦ædôLÌrô3Íäí@á¦È��dë3Óäá¦È�ãZÚS` o6|�Æ�ÕhÖjÌDÕ=Ô�Ç3È��LÓäâx�Læ~âqÕ=È�ËLÒ ë3â
ÒPædó¡ÓäËLÌrÔ�ÓäË3è_Ô�Ç3ÈXÑ1æ~Õ�ÔZñ_Ï�Ì~Ñ�Ç,Õ¦ëqô��~È�íïå+æ~á�Ò	Ñ1æ~ë3ÍiÒ�ôHÈXè~È0Ë3È�á�ÌDÔ¦ÈZÒ	ÓäËêÌ@Õ¦ÓäË3èdÍ´È;Ñ1í3Ñ1ÍäÈ~Ö
á¦È
�~ëqÓ´á�ÓäË3è��S`
Ñ1í3Ñ1ÍäÈ�Õ&Ô¦æXè~È0Ë3È�á�ÌDÔ¦È_ÌDÍäÍ
Ô¦Ç3È.Õ¦ëqô��~È�íPÕhñ

�@¶Zµ ½aÿ�����ÿ6Õ	�
?~ëqÕ¦Ô¡ÌrÕXÔ�Ç3È�ôLÈ0Õ¦Ô¡ÐPÈ�á�âLÈ0Ë:Ô@Óäó¡â3ÍäÈ�ó@È�ËPÔ�ÌrÔ�Óäæ~Ë,ÓäÕXÌrËÔ`ïá�æ~ë3ËHÒ
Ö@`	Õ¦Íäærå â3ÓäâHÈ�ÍäÓäË3È~ÖgÔ�Ç3È�Õ�ÌDó¡ÈXÇ3ædÍ£ÒmÕ
ð÷ædá�Ô¦Ç3È;Õ¦ë3ôL�~È�í�è~È0Ë3È�á�ÌDÔ¦Óäæ~Ë\ñ=ÐPÓäËLÑ1È�Ô�Ç3È;Õ¦Ô¦á�ëLÑ1Ô�ë3á¦È;ÓäÕ=î~È0á¦í�Õ¦Óäó¡ÓäÍiÌrá�Ô¦æ¡Ô�Ç3È�á�æ~ë3ËLÒ Ó´Ô�Õ¦È�Íùð�ÖqÔ¦Ç3È;Õ�ÌDó¡È
Ô¦ÈhÑ¦ÇqË3ÓJ�~ëqÈ�Õ²Ñ0ÌrËXôHÈ�ë3Õ¦ÈZÒûñ<õJÔFá�È��dë3Óäá¦È�Õ�Þrà�o6|�Æ�ÕgÔ�æ�Ñ0ÌrÍiÑ1ë3ÍiÌrÔ�È�Ô¦Ç3Èas��.Ø³Õ<ð÷æ~á<ÈZÌdÑ�ÇXærð
Ô¦Ç3È�à.Õ¦ëqô��~È�íPÕ
è~È0Ë3È�á�ÌDÔ¦ÈZÒ ð÷ædá�ÈZÌdÑ¦Çéá�æ~ë3ËHÒ
ÖgÌrË3ædÔ¦Ç3È0á%ãhÚ8`	o6|�Æ�Õ.ð÷ædá�Ô¦ÇqÈ¡Õ¦ôHæ
��Õ¦ëqô3Õ¦Ô�Ó´Ô�ë3Ô¦ÓäædË�ÖgÌrËLÒ��dÚ	o�|³Æ�Õ.ð÷ædá
Ñ�ÌDÍ£Ñ�ë3ÍiÌrÔ¦ÓäË3è;Ô¦ÇqÈ�ÓäËLÒmÈ���Ödð÷æ~á=ÚdÚràuo�|�Æ�Õ+ð¤æ~á+ÈZÌ~Ñ�Ç,á�æ~ë3ËLÒûñ<Î�Ô�`�á�æ~ë3ËLÒmÕZÖ3Ô�Ç3ÓäÕ=Ñ1æ~ó@È�Õ+Ô¦æ,ã�`S�8�{o�|³Æ�Õ
â3Íäë3Õ�ÌrË3ædÔ¦Ç3È0á=Ú~Þ8�{o�|³Æ�Õgð¤æ~á+Ô¦Ç3È�×	|ks=È�Õ=ÌDÔ�Ô¦Ç3È&È�ËLÒ@ærð<Ô¦Ç3È.â3ÓäâHÈ�ÍäÓ´ËqÈ~Ödð÷æ~á�Ì�Ô¦æ~Ô1ÌrÍHærðgÚ8�~ÞS��o�|³Æ�ÕZñ

v

Î7ó¡ædá¦È=Ñ1ædó¡âLÌdÑ1ÔZÖdÚ.á¦ædë3ËLÒXÒPÈ�Õ�Óäè~ËXå+æ~ë3ÍiÒ;Õ¦Ô�ÓäÍ´Íqá¦È��dë3Óäá¦È;ãZÚS`�o6|�Æ�Õ�ð÷æ~á�Ô¦Ç3Èas��.Ø�ÕhÖLã
�~ÚDà o�|³Æ�Õ
ð÷ædá�Ô¦Ç3È¡Ð:öBôHæ
�3È�Õ_å�ÓäÔ�ÇéÔ¦Ç3ÈXá�È�Õ¦ë3ÍäÔ�Õ_óXëA�3ÈZÒ	ôPíêÔ�á¦ÓäÕ¦Ô1ÌrÔ�È¡ô3ëPø
È�á�ÕZÖ'ÞDà	o�|�Æ�Õ�ð÷ædá�Ô�Ç3È¡ÓäËLÒmÈ��3È�ÕZÖgÌDËLÒ
Ú~ÉdÞ�o�|�Æ�Õ�ð÷ædá�Ô¦Ç3È�×	|as&È�ÕXÌrÔ�Ô�Ç3È¡Õ�Ô�Ìrá�Ô_æDð=Ô¦Ç3ÈXâqÓ´âHÈ�ÍäÓäË3È~ñ�Æ�Ç3ÓäÕ�å+æ~ëqÍ£ÒïÔ�æ~Ô1ÌrÍgÔ�æ,á¦ædë3è~Ç3Íäí ãZÉS�8�
o�|³Æ�ÕZÖ�å�Ç3ÓäÍ´È@Õ¦Ô�Ó´ÍäÍ+æ~Ë3Íäíïá¦È��dë3Óäá�Ó´Ëqèf�dÚêÑ1í3Ñ1ÍäÈ�ÕXÔ�æêèdÈ�Ë3È�á1ÌrÔ�È Ì ð÷ë3ÍäÍ+Õ¦È�ÔXæDð=Õ¦ë3ôL�~È�íPÕZñµÎ=ÍäÔ�Ç3æ~ë3èdÇéÓäÔ
ó¡ÓäèdÇ:Ô<ôHÈ.âLædÕ¦Õ¦Óäô3ÍäÈ.Ô¦æ;á¦È0ë3Õ¦È�Ô�Ç3È�ÐdöJôLæ
�3È�Õ+ð÷á�æ~ó Ô�Ç3È.È�ËLÑ1á�íPâ3Ô¦Óäæ~Ë�â3ÓäâHÈ�ÍäÓäË3È~ÖPÔ¦ÇqÈ�ÌdÒ3ÒPÓäÔ¦ÓäædËLÌrÍ3óXë¯�mÓäË3è
å+æ~ë3ÍiÒ�â3á¦ædôLÌrô3Íäí�Õ�å²ÌDó¡â;ó¡ædÕ¦Ô�æDðjÔ�Ç3È=Õ1ÌhîPÓ´Ëqè~ÕgÌ~Ñ�Ç3ÓäÈ�îdÈZÒ;ôPí_Ô�Ç3ÓäÕgá¦È�ëqÕ¦È=ëqË3ÍäÈ�Õ¦Õ+æ~Ë3Íäí_Ì&Õ�Ó´Ëqè~ÍäÈ1öJá¦æ~ëqËLÒ
Õ¦È0á¦âHÈ�ËPÔ�Óäó@â3ÍäÈ�óXÈ�ËPÔ�ÌDÔ¦ÓäË3æ.ÓäÕ�ë3Õ¦ÈZÒûñ

�@¶�� �´Û�Ó���Ú��
Æ�Ç3Èx�~È�íéèdÈ�Ë3È�á1ÌrÔ¦ÓäædË�ÓäËéÆ�å'æDÊLÕ¦Çµæ3Ñ�Ñ1ë3á�ÕXÓ´ËéÔJå+æ,âLÌDá¦Ô�ÕZÖgÔ�Ç3ÈXÊHá¦Õ¦ÔXèdÈ�Ë3È�á1ÌrÔ�Ó´ËqèêÔ�Ç3È¡ÔJå+æ	�~È0í:Õ�ð÷ædá
Ô¦ÇqÈ�ÐdöBôHæ
�3È�ÕêÌDËLÒ Ô¦Ç3ÈéÕ�ÈZÑ1ædËLÒ�èdÈ�Ë3È�á1ÌrÔ¦ÓäË3è Ô¦Ç3Èéá�æ~ë3ËLÒÄ�dÈ�íPÕZñ Æ�Ç3È�Ðdö<rgæ
��Õ¦ëqô��~È�íPÕïá¦È��dë3Óäá�È�Ì
Ñ1ædË3Õ¦Ô1ÌrËPÔ y q:zBÚ�Î
}¡ó�ÌrÔ�á¦ÓU��óXë3ÍäÔ¦Óäâ3ÍäÓiÑ�ÌrÔ�Óäæ~Ë�ñÄ|�Õ¦ÓäË3èµÕ¦âHÈZÑ1ÓiÌrÍäÓäúZÌDÔ¦Óäæ~Ë�Ö&ÌrÕ¦Õ�ë3ó¡ÓäË3è�ÌDËUÌhî~È0á�ÌrèdÈ,ærðu`
o�|³Æ�Õ�¨dÑ1æ~Ë3Õ�Ô�ÌDË:ÔhÖ3Ú~ÉdÞ�o�|³Æ�Õ²ÌDá¦È�á¦È
�~ëqÓ´á�ÈZÒ@Ô¦æ�èdÈ�Ë3È�á1ÌrÔ�È�Ô�Ç3È=Õ�ë3ô3Ô�È�á¦ó@ÕZÖ3ÌrËHÒXÌrË3ædÔ¦Ç3È�áav~Þ¬o�|�Æ�Õ�Ìrá�È
á¦È
�~ëqÓ´á�ÈZÒ�Ô�æXâLÈ�áÜð÷æ~á�ó Ô�Ç3È�s��.Ø�Õ�Ô¦æXèdÈ�Ë3È�á1ÌrÔ�È�Ô¦Ç3È�Õ¦ôHæ
�¡Õ¦ë3ô��dÈ�íPÕZñ

q3ædá'Óäó@â3ÍäÈ�ó¡È�ËPÔ1ÌrÔ¦ÓäærË3Õ<å�Ç3È0á¦È.Õ¦ë3ôL�~È�íXèdÈ�Ë3È�á1ÌrÔ¦ÓäædË%ÓäÕgËqæ~Ô+Ó´Ë@Ô¦Ç3È�Ñ1á�ÓäÔ¦ÓiÑ�ÌrÍHâLÌDÔ¦Ç¡ædË3È�Ñ0ÌrË�ë3Õ¦È&Ô¦Ç3È
ÐdöJôLæ
�3È�Õ�ð÷á�æ~ó Ô�Ç3È.È�ËLÑ1á�í:âqÔ¦Óäæ~Ë@â3ÓäâLÈ�ÍäÓäË3È~ñ<Æ�ÇqÈ=ó¡æ3ÒPÓùÊjÑ0ÌrÔ¦ÓäædË3ÕgÔ¦æ�Ô¦Ç3È.È��3ÓäÕ¦Ô�Ó´Ëqè_â3ÓäâHÈ�ÍäÓäË3È=å+æ~ë3ÍiÒXÌdÒ3Ò
Þrà�o6|�Æ�Õ&Ô¦æ¡óXë¯�¡Ô¦Ç3È�ÓäË3âqë3Ô¦Õ&Ó´ËPÔ�æXÔ¦Ç3È_Ð:öBôHæ
�3È�ÕZÖ
Þrà�o�|³Æ�Õ=Ô¦æXóXë¯�¡Ô¦Ç3ÈXÐdöJôLæ
��Õ¦ë3ô��dÈ�íPÕ.ôLÈ�ÔJå+È�È�Ë
Ô¦ÇqÈ�È0ËLÑ1á¦íPâ3Ô�Óäæ~Ë¡Õ�ë3ô��dÈ�íPÕ=ÌrËLÒ#Ô¦Ç3È.ÓäË3â3ë3Ô:�~È�íPÕZÖHÌrËLÒXÌDË3æ~Ô�Ç3È�á��dÚ�o�|³Æ�Õ�Ô¦æ;ó¡æ3ÒPÓùð÷í.Ô¦Ç3È�wgò³Æ�Ödð÷æ~á+Ì
Ô¦ædÔ�ÌDÍ:æDðFãZÞS��o6|�Æ�ÕZÖdÌ=îdÈ�á¦í�Õ¦ó%ÌDÍäÍ~Ì~Ò3ÒPÓäÔ�Ó´ædË�Ô¦æ&Ô¦Ç3È�âqÓ´âHÈ�ÍäÓäË3È~ñ
Æ�ÇqÓ´ÕgÌDâ3â3á¦æPÌ~Ñ�Ç;å'ædë3ÍiÒ.á¦È��dë3Óäá�È²Ì&Ô¦ædÔ�ÌDÍ
ærðFÉqãZÚ�o�|³Æ�Õ'æDðûÒqÌrÔ�ÌDâLÌrÔ�ÇXÔ¦æ�èdÈ�Ë3È�á1ÌrÔ�È=Ô¦ÇqÈ=Õ¦ëqô��~È�íPÕ�ÌrËLÒXÚS��Ñ1í3Ñ1ÍäÈ�Õ+Ô¦æ�èdÈ�Ë3È�á1ÌrÔ�È�Ô�Ç3È=Ñ1ædó¡â3ÍäÈ�Ô�È�Õ¦È�Ô
ærð<Õ¦ë3ôL�~È�íPÕZñ
Î�Õ�È�âLÌrá1ÌrÔ�È�á¦ædë3ËLÒ�Õ�ë3ô��~È0í ÒqÌrÔ�ÌDâLÌrÔ�Ç,Ñ1æ~ë3ÍiÒ@ôHÈ�Óäó¡â3ÍäÈ�ó@È�ËPÔ¦ÈZÒ
Ödá¦È
�~ëqÓ´á�ÓäË3è¡ÌrË,Ì~ÒqÒPÓäÔ¦Óäæ~ËLÌDÍ�Ñ1æ~âPí

ærð�Ô�Ç3È�Ú�ò+ö¤ð÷ë3ËLÑ1Ô�Óäæ~Ë3Õ'ÌDËLÒXÌ�wgò³Æ z/vqã���o�|³Æ�Õ�}0ñ<Æ�Ç3ÓäÕgå'ædë3ÍiÒ;á¦È��dë3Óäá�È�Ì.Ô�æ~Ô�ÌDÍjÌDá¦ÈZÌ�ærð'ãZÚdÞ8��o�|³Æ�ÕZñ
Æ�Ç3ÓäÕ�ÓäÕ<Ñ1æ~ó@âLÌrá1Ìrô3ÍäÈ<Ô¦æ&Ô¦Ç3È'Ñ�æ~Õ¦Ô<æDðLÔ¦Ç3È�È�ËLÑ1á�í:âqÔ¦Óäæ~Ë;â3ÓäâLÈ0Í´ÓäË3ÈdÖZôqë3Ô<ÇLÌrÕ\Ô¦Ç3È�Ì~ÒPî~ÌDËPÔ�ÌrèdÈ<Ô¦ÇLÌDÔ�Õ¦ëqô��~È�íPÕ
Ñ�ÌDË¡ôHÈ=è~È0Ë3È�á�ÌDÔ¦ÈZÒ@ædËXÔ¦Ç3Èk�Lí¹Ñ�æ~ËLÑ1ëqá¦á¦È0Ë:Ô�Íäí¡å�ÓäÔ¦ÇXÈ�ËHÑ1á¦íPâ3Ô�Ó´ædË�ÖPÈ��LÑ1È�âqÔ+ð÷æ~ágÔ�Ç3æ~Õ�È.Õ¦ë3ô��dÈ�íPÕ'á�È��dë3Óäá¦ÈZÒ
ð÷ædá=Ô¦ÇqÈ_ÓäË3â3ëqÔ�ÌDËLÒ�ædë3Ô¦â3ëqÔ�å�ÇqÓ´Ô�È�Ë3ÓäË3èHñ=Æ�Ç3ÓäÕ.ÌrÍäÍäærå�Õ�ÌXÇHÌrá�Òmå²ÌDá¦È;Ó´ó@â3ÍäÈ�óXÈ�ËPÔ�ÌDÔ¦Óäæ~Ë@ærð'ÔJå+ærÊHÕ¦Ç,Ô�æ
æ~âHÈ�á1ÌrÔ¦ÈXÌrÔ�ÌDÍ´ó@æ~Õ�Ô'ó�Ì
�3ÓäóXë3óVôLÌrËLÒmå�Ó£ÒmÔ¦Ç,å�Ç3ÓäÍäÈ_ÌDô3ÍäÈ�Ô¦æ�Ñ¦ÇHÌrË3èdÈ_Õ�ë3ô��~È0í:Õ�æ~ËêÌ#ô3ÍäæmÑ���ôPí�ô3ÍäæmÑ��
ôLÌDÕ¦ÓäÕZÖ~ÌDËLÒ�Ô¦æ.Õ¦Ç3Óùð÷Ô<ôHÈ�ÔJå+È�È�ËXÈ�ËLÑ�á¦íPâ3Ô¦ÓäædË¡ÌrËLÒ;ÒPÈZÑ1á�íPâ3Ô¦Óäæ~Ë¡ÌDÔ<å�Ó´ÍäÍJñHÆ�Ç3ÓäÕ<ÇLÌrÕ<Ô¦ÇqÈ�È1øjÈhÑ1Ô'æDðLá¦ÈhÒPëLÑ1ÓäË3è
Ô¦ÇqÈ��dÈ�í¡Õ�È�Ô¦ëqâ,Ô¦Óäó¡È&Ô¦æ;æ~Ë3Íäí@Ô¦Ç3È.à¡Ñ1í3Ñ1ÍäÈ�Õ�Ë3È0ÈZÒPÈZÒ	Ô¦æ;è~È�ËqÈ�á�ÌDÔ¦È;Ô¦Ç3È.ÓäË3â3ë3Ô=ÌDËLÒXædë3Ô¦âqë3Ô�å�Ç3ÓäÔ¦È�ËqÓ´Ëqè
Õ¦ëqô��~È�íPÕhñ

@ ý ¾����.¿ Å�gihpe��¬gi��½_¾
�.¾+ÅZÀX½�ÿ

Æ�å+ærÊLÕ�Ç%ÌrËHÒ%ÐmÈ�á¦âHÈ�ËPÔ=ÇLÌhîdÈ=ÇLÌDá�ÒPå�Ìrá�È.Ó´ó@â3ÍäÈ�óXÈ�ËPÔ�ÌDÔ¦Óäæ~ËqÕZÙX��Û'Ù�É0Û�á¦È�âHæ~á�Ô¦ÈZÒ Ó´Ë@Ô¦Ç3È.ÍäÓäÔ¦È�á1ÌrÔ�ë3á¦È.å�Ç3ÓiÑ�Ç
Ñ�ÌDË¡ôHÈ=ë3Õ�ÈZÒXÔ�æ�Ç3È�Íäâ%Ñ0ÌrÍäÓäô3á�ÌDÔ¦È�Ô¦ÇqÈ��dëLÌrÍäÓäÔJí�æDð�æ~ë3á+È�Õ¦Ô�Óäó%ÌrÔ�È�ÕZñ�r�æ~Ô¦Ç@Óäó¡â3ÍäÈ�óXÈ�ËPÔ1ÌrÔ¦ÓäædË3Õ�ë3Õ�ÈZÒ¡ò�â�o
Õ¦íPËPÔ¦ÇqÈ�Õ¦ÓäÕZÖqå�Ç3ÓiÑ�Ç%ÇPë3á�Ô¦Õ&âLÈ�áÜð÷æ~á�ó%ÌDËLÑ1È.ô3ë3Ô=ÒPæPÈ�Õ�Ëqæ~Ô�Õ¦ÓäèdË3ÓùÊjÑ�ÌrËPÔ�Í´í¡Ì$øjÈhÑ1Ô=Ô�Ç3È�Ìrá¦ÈhÌ;á¦È��dë3Óäá¦ÈhÒ
ñ
Æ�Ç3È+Æ�å'æDÊLÕ¦Ç�Óäó@â3ÍäÈ�óXÈ�ËPÔ�ÌDÔ¦Óäæ~Ë�ÓäËXÙX�hÛ:á�È��dë3Óäá¦È�Õ<á�æ~ë3èdÇ3Íäí«vS�8��s&Ó´ÍäÓäËA�=àA�8�8��Ýao6rgÕhÖræ~á+ã�`S�8�ao�|³Æ�ÕZÖ

å�ÓäÔ¦Ç.Ô¦ÇqÈ'ÇLÌDá�ÒPå�Ìrá�È<ð÷ædá
Ô¦Ç3Ègá�æ~ë3ËHÒ.ÓäÔ¦Õ¦È0Ífð3á�È��dë3Óäá¦ÓäË3è=á�æ~ë3èdÇ3Íäí�ã�àA�8�ao�|³Æ�ÕZñ\Î�â3ÓäâHÈ�ÍäÓäË3ÈZÒ&î~È�á�Õ¦Óäæ~Ë�ë3Õ¦ÈZÒ
ç¡Ñ�ímÑ�Í´È0Õ�¨rá�æ~ë3ËHÒ
Ö�á�ë3Ë3Ë3ÓäË3è�ÌrÔ��~É@×,ò�údñ.Æ�Ç3á¦È�È¡Ñ�æ~Ë3Õ�Ó£ÒmÈ�á�ÌDÔ¦Óäæ~Ë3Õ.á�ÈZÒPëLÑ1ÈhÒïÔ¦Ç3È�Óäá.âHÈ�áJð÷ædá¦ó�ÌrËLÑ1ÈSn�Ô¦Ç3È
Óäó¡â3ÍäÈ�ó@È�ËPÔ�ÌDÔ¦ÓäærË¡ærîdÈ�á¦Ç3ÈhÌ~Ò�æDð@t�ò�â�o�Ö3á�æ~ë3Ô�Ó´Ëqè%Ñ1ædË3è~È�Õ�Ô¦Óäæ~ËïÌrËLÒ�Ô�æPæ~ÍäÕZÖ
ÌrËHÒ,ÌrË,ædÍiÒPÈ�á=èdÈ�Ë3È�á1ÌrÔ�Ó´ædË
q�w y Î;ñ
Æ�Ç3È�Ìrá�ÈZÌ�ËPë3óXôHÈ�á�Õ<ð÷æ~á+Ô¦ÇqÓ´Õ+Óäó¡â3ÍäÈ�ó@È�ËPÔ�ÌDÔ¦Óäæ~Ë_ÌDá¦È&î~È�á�í¡Ñ1Íäæ~Õ¦È.Ô�æ_Ô�Ç3È=È�Õ�Ô¦Óäó%ÌDÔ¦È�Õ�ð÷ædá'Æ�å+ærÊLÕ�Ç�ÖPÌ

î~È0á¦í¡èdæPæmÒ;Õ�Óäè~Ë�ñ<Î&Í´Õ�æLÖPÔ�Ç3È=âHÈ�áJð¤æ~á¦ó�ÌrËLÑ�È�ÒmÈ�è~á1Ì~Ò3ÌDÔ¦Óäæ~ËXâ3á�È�Õ¦È0Ë:Ô&ÓäË¡Ô¦ÇqÈ�ò�â�o,îdÈ�á¦Õ�Ó´ædË¡ÓäÕ+È��3âLÈZÑ�Ô¦ÈZÒ
ñ
ò�â�oµÕ¦íPËPÔ¦ÇqÈ�Õ¦ÓäÕ)~B�XÔ�ÈZÑ�Ç3Ë3ÓJ�dë3È�Õ�Ô�È�ËLÒïÔ¦æ@â3á¦æ3ÒPëHÑ1È¡Õ�Ó´èdË3ÓùÊjÑ�ÌDË:Ô�Íäí¡Íäærå'È0á�âHÈ�áÜð÷æ~á�ó¡ÓäË3è¡ÒPÈ�Õ�Óäè~Ë3ÕG~/�PÖ�ÌDËLÒ
Ô¦ÇqÈ�s=ÓäÍäÓäËA�%àA�8�8��Õ¦È0á¦ÓäÈ�Õ.ÓäÕ�ÌrÍäÕ�æXÕ¦Óäè~Ë3ÓùÊjÑ0ÌrËPÔ¦ÍäíXÕ¦Íäærå+È�á=Ô�Ç3È�Ë,Ô�Ç3ÈXÑ1ë3á¦á�È�ËPÔ.è~È�Ë3È0á�ÌrÔ�Óäæ~Ë�ærð@s&ÓäÍ´ÓäËA��q�w\ö
y Î&ÕZñ
�Z� �����! ��! �"��8.B%B.�>+�8.�W!#)_��!;��! �0�.< Z;B%Z�X1-.�0��X=�(&D�!_��aW!.<�).RW�3�.< Z;B%Z�X,8>+�!#�=@ßA(�=8_�*8()_G.$(�=80�>+�8.B=a;<#�?a,��XW!.�0
>'#VTY#�%Z?f>+�8.

();�>J*8(�W�;R�X%/;R*��!>J%B2a#�T�>+�8.
�X?a,�W!.R?�.B=�>J()>+� #�=�9
() �#�,�,-#G '.�0�>Z#�(�W!#�"�.B%�W!.<�).RW$(�,�,�%B#)();Z��#�T�(��8()0� +,-.�;B�X�8.<0�(�=80«�8(�=80
,�W!();�.<0a0�()>Z(�,8()>+�¢"����!;Z���! D() Z J*�?�.�0��X=�>+�8.b.� '>+�X?�()>Z.< �P�Z� ���8.B%B.b(�%/.�>J"�#�TY();�>'#�%/ L�X=��G#�W!�).<0BAB&�3�ß{ '2G=�>J�8.� J�! �#�=�(@0�.� J�!_�=�WX�X&�.��D"�#��8 J���! ë*8 J*8(�WXW!2�;<#�=8 '>+%'*8;�>'.�0
"��!>+�8#�*8>
0�.<>Z(��XW!.�0{,�W!();<.R?�.B=�>' �T�#�%�>+�8.��X=80
�!�)�!0
*8(�W$?�#
0
*�W!.< �#�T@>+�8.�0�()>'(�,8()>J��9�(�=80�>+�8.�,�W!();<.RHJ(�=80
H�%/#�*8>Z.a>'#
#�W! a(�%B.�=8#)>
�X=�>'.RWXWX�!_).B=�>�(�1A#�*8>�,�W!(G;B�X=8_�#�%D%B.<;<#�=8 '>+%'*8;�>J�X=�_�0�()>Z(�,8()>+�8 A�X=�0�.� J�!_�=8 �P

ã��

Æ�Ç3È¡ÐPÈ�á�âLÈ0Ë:Ô;Óäó¡â3ÍäÈ�ó@È�ËPÔ�ÌDÔ¦ÓfædËéÙ É0Û+Ó´Õ.ë3Ëmð÷æ~á�Ô¦ë3ËLÌDÔ¦È�Íäí,ÇHÌrá�ÒmÈ�á�Ô¦æ�ë3Õ�È¡ÌrÕ_Ì�Ñ�ÌDÍäÓ´ôqá�ÌrÔ�Óäæ~Ë�ñ�õJÔ�á�È1ö
�dë3Óäá¦ÈZÒ@ã�`qÖX�8�8�ao6|�Æ�ÕgÌrÔ��~ç&×,ò�ú�ð÷æ~ágÌ²ð÷ë3ÍäÍäí=ë3Ë3á�æ~ÍäÍäÈZÒ
ÖrâqÓ´âHÈ�ÍäÓäË3ÈZÒ{z1ã+Õ¦Ô�ÌDè~È�¨Dá¦ædë3ËLÒ�}\î~È0á¦Õ¦ÓäædË�Ö3ãZÉqÖX�8�8�
o�|³Æ�Õ'ÌrÔ&ã��.×,ò�ú+ð¤æ~á'ÌDË_ë3Ëqâ3ÓäâLÈ�ÍäÓäË3ÈZÒûÖ-`.á�æ~ë3ËHÒ�îdÈ�á¦Õ�Ó´ædË�ÖPÌrËLÒ�ãdã~ÖX�8�S��o�|³Æ�Õ'ÌrÔ&ãZÉ.×,ò�ú+ð¤æ~á'Ì&Õ¦ÓäËPö
è~ÍäÈgá�æ~ë3ËHÒ�å�Ç3È0Ë_Óäó¡âqÍ´È0óXÈ�ËPÔ¦ÈZÒ&ÓäË_Ìat&Óäá¦Ô¦È��%ã��S�8�3ñûÆ�Ç3È'âHÈ�áÜð÷æ~á�ó%ÌrËHÑ1ÈgËPë3óXôHÈ�á¦Õ<Ìrá¦È+î~È0á¦í�èdæ:æ3Ò
ÖrÌDËLÒ
ÌrÍäÔ�Ç3æ~ë3èdÇXÕ¦ædó¡È+Ó´ó@â3á¦ærîdÈ�ó¡È0Ë:Ô\ó%Ìhí.ôHÈ�ÌdÑ�Ç3ÓäÈ�î~ÈZÒ;ôPí¡Ì.ó�ÌrËPëLÌDÍ´Íäí&Í£ÌhídÈZÒdöJæ~ë3Ô+ÒPÈ�Õ¦ÓäèdË�Ö~Ô�Ç3È=ËHÌrÔ¦ëqá¦È.ærð
Õ¦È0á¦âHÈ�ËPÔ�Òmæ:È0Õ¦Ë�� Ô�ÇLÌhîdÈ�ÇqÈZÌhîPí¡Ò3ÌrÔ1ÌrâLÌDÔ¦Ç�á¦È�èdë3ÍiÌrá�Ó´ÔJíXÔ�æXÈ��3â3Íäæ~ÓäÔZñ
Æ�Ç3È+Õ¦ÓäË3è~ÍäÈgÌrËHÒ.È�Óäè~ÇPÔ�á�æ~ë3ËHÒ.î~È�á�Õ¦Óäæ~ËqÕ­Ñ0ÌrË�Ë3ædÔ�ôHÈ'ëqÕ¦ÈZÒ�Ô¦æ=Ñ�ÌDÍäÓ´ôqá�ÌrÔ�ÈgÔ¦ÇqÈ²ÌDá¦ÈZÌ³È�Õ¦Ô�Ó´ó�ÌrÔ�È�ÕZÖrÌrÕ\Ô¦Ç3È

ÒPÈ�Õ�Óäè~Ëïë3Õ¦ÈZÒ��LÓäâA�Lædâ3Õ�ÌDËLÒ,×	|ks=È�Õ�ð÷æ~á&Õ¦ë3ô��dÈ�í,Õ�Ô¦æ~á1ÌrèdÈ~ÖHÓ´ËqÕ¦Ô¦ÈhÌ~Ò	ærð'Ô�Ç3È_Íäë3Ô�ÕJö¦ÌrÕÜöBó@È�ó¡ædá¦í¡ÌrôqÓ´ÍäÓäÔJí
â3á�È�Õ¦È�ËPÔ.ÓäË,Ô¦ÇqÈ�t=Óäá¦Ô�È���ñ�qqë3á¦Ô�Ç3È�á¦ó@æ~á�È~Ö3Ô�Ç3È_Õ�ÓäË3è~ÍäÈ.á¦ædë3ËLÒ�Óäó¡âqÍ´È0ó¡È�ËPÔ�ÌDÔ¦ÓäærËXë3Õ�ÈZÒê×´|as=È0Õ�ÓäË3Õ�Ô¦ÈZÌdÒ
ærðHÔ¦Ç3È�ÓäËPÔ¦È�á�ËLÌrÍqÔ¦á¦ÓäÕ�Ô�ÌrÔ�È�ÍäÓ´ËqÈ�Õ<Ô¦æ.óXëA��Ô�Ç3È=ÐdöJôLæ
�3È�ÕhÖ~Ì&Õ¦È�á�Óäæ~ë3ÕgÓäË3È�ì%Ñ1ÓäÈ�ËLÑ1í;ÓäË�Ô¦Ç3È�Óäó@â3ÍäÈ�ó¡È�ËPÔ1ÌrÔ¦ÓäærË�ñ
Æ�Ç3È�ôHÈ�Õ¦Ô.ó@ÈZÑ�ÇLÌrË3ÓäÕ�óVð÷æ~á=ÌDÔ¦Ô�È�ó¡â3Ô�ÓäË3èXÔ¦æ¡Ñ�ÌDÍäÓ´ôqá�ÌrÔ�È�Ìrá¦ÈhÌXÓäÕ=Ô�æ��~ëHÌ~ÒPá�ë3â3ÍäÈ�Ô¦ÇqÈ_Ìrá�ÈZÌXÈ�Õ�Ô¦Óäó%ÌDÔ¦È

ð÷ædá­ÌDË_È0Ó´èdÇPÔFá�æ~ë3ËHÒ�îdÈ�á¦Õ�Ó´ædË_æDðjÕ�È�á¦âHÈ�ËPÔZÖ3ÌDÕgÌ�ÊHá¦Õ¦Ô+Ìrâ3â3á�æ
�3Ó´ó�ÌrÔ�Ó´ædË�ñ�ó Ó´Ô�Ç%ãhÉ3ÖX�8�S�ao�|³Æ�Õ<ð÷æ~á<Ô�Ç3È'È0ÕJö
Ô¦Óäó�ÌrÔ¦ÈhÒ�Ìrá�ÈZÌ3Ö~ÌDËLÒ@ã�`3ÖX�S�8��o6|�Æ�Õ<ð¤æ~á<Ô¦Ç3È�ò�â�o@Óäó¡â3ÍäÈ�ó@È�ËPÔ�ÌDÔ¦Óäæ~Ë�Ö1Ô�Ç3È=Ñ1ædó¡âLÌDá¦ÓäÕ¦ædË�ÓäÕFâqá¦È�Ô�ÔJí¹Ñ1ÍäædÕ¦È~ñ
Æ�Ç3È.Ì~Ò3ÒPÓäÔ�Ó´ædËLÌrÍHÌrá¦ÈhÌ.ð÷ædágÔ¦ÇqÈ�ò�â�o�î~È�á�Õ¦Óäæ~Ë@ë3ËLÒPædë3ô3Ô�ÈZÒPÍäíXÓäËLÑ1ÍäëLÒPÈ�Õ+Ô¦ÇqÈ=Íäæ~èdÓ£Ñ�ð¤æ~ágÕ�È�Ô¦Ô�Ó´Ëqè_Ô�Ç3È.Õ¦ë3ôPö
�~È0í:Õ�ÌrËHÒXâHÈ�áJð÷ædá¦ó@Ó´Ëqè�õ<¨8�;Ödå�Ç3ÓäÍ´È&Ô¦Ç3È.È�Õ�Ô¦Óäó%ÌDÔ¦È�ÓäË¡Ô�Ç3ÓäÕ'âHÌrâHÈ�á'ædË3Íäí¡Ñ1æ~ËqÕ¦ÓiÒPÈ�á�Õ�Ô¦Ç3È�Ñ1á�í:âqÔ¦æ~èdá�ÌDâ3Ç3ÓiÑ
Ñ1ædá¦È~ñ

C ¥ À#½%Ä�erÂ�ÿgÅZÀ#½%ÿ �;½%Á Df�.ÿ<ÿ<ÀX½�ÿEDf����¿+½��.Á

r�æ~Ô¦Ç¡Ø³Ó ß1ËLÒ3ÌDÈ�Í3ÌrËLÒ;Æ�å+ærÊLÕ�Ç¹ÌDá¦È�îdÈ�á¦íXÌró@È�ËLÌrôqÍ´È�Ô¦æ�ÇLÌDá�ÒPå�Ìrá�È�Óäó¡â3ÍäÈ�óXÈ�ËPÔ1ÌrÔ¦ÓäædË3ÕZñ
Ø�Ó ß1ËHÒ3ÌrÈ�ÍPÓäÕ<Ô¦Ç3È
ðBÌDÕ¦Ô¦È0Õ¦ÔZÖqå�ÓäÔ¦Ç%Ì�è~á¦ÈhÌrÔ=ÒPÈ�èdá¦È�È.æDðFâLÌDá�ÌrÍäÍäÈ�ÍäÓäÕ¦óVÌrËLÒ#î~È�á�í��dë3ÓiÑ��Xæ~âHÈ�á�ÌDÔ¦Óäæ~Ë3ÕhÖPô3ë3Ô�Ìrá�ÈZÌ;á¦È��dë3Óäá�È�ó¡È�ËPÔ�Õ
ÓäËLÑ1á�ÈZÌrÕ�È=Õ¦ëqô3Õ¦Ô1ÌrËPÔ¦ÓiÌrÍäÍäí�Óùð
È�ËLÑ1á�í:âqÔ¦Óäæ~Ë¡ÌDËLÒXÒPÈZÑ1á�íPâ3Ô¦Óäæ~ËXÓäÕgá�È��dë3Óäá¦ÈZÒ#ÓäË_Ô�Ç3È�Õ�ÌDó¡È�ÒPÈ�îPÓiÑ1È~ñ<Î=ÍäÔ�Ç3æ~ë3èdÇ
Æ�å+ærÊLÕ�Ç,ÓäÕ�Õ¦æ~ó@È�å�ÇLÌDÔ�Õ¦Íäærå'È0áZÖ3Ô�Ç3È�á�È_ÓäÕ�ÌDË�È��LÑ1È�ÍäÍäÈ�ËPÔ�ÒmÈ�è~á�È�È_æDð��LÈ��3Óäô3ÓäÍ´ÓäÔJíXÓäË,Õ�ë3ô��~È0í%èdÈ�Ë3È�á1ÌrÔ�Ó´ædË
ÌrËHÒ¡ÓäË�Ìrá¦ÈhÌ8¨râHÈ�áÜð÷æ~á�ó%ÌrËHÑ1È.Ô¦á�ÌdÒPÈ�æDøjÕhñ
Æ�Ç3È�ËPë3ó@È�á¦ædë3ÕZÖPÍiÌrá�è~È.ÐdöBôHæ
�3È�Õ�ÌDá¦È.æ~ËqÈ�æDðgÔ¦Ç3È&ð÷ÈZÌDÔ¦ë3á�È�Õ=å�ÇqÓ£Ñ�Ç�è~á�ÈZÌrÔ�Íäí%Ñ1á�Ó´âqâ3ÍäÈ�× Î�Ø=Ð@ÇLÌDá�Òdö

å�Ìrá¦È&Óäó¡â3ÍäÈ�ó@È�ËPÔ�ÌrÔ�ÓäærË3ÕZñ
ò=ÌhîPÓäË3è�Ô�æ_Óäó@â3ÍäÈ�óXÈ�ËPÔ
v.ÍiÌrá¦èdÈ��~ÚDô3ÓäÔ'ÐdöJôLæ
�3È�Õ+Ô¦æXÑ1á¦ÈhÌrÔ¦È�Ì�Õ¦ÓäË3èdÍ´È���öBÕ�Í´ærå
â3ÓäâHÈ�ÍäÓ´ËqÈXÓ´ó@âLædÕ¦È_Ì Õ¦Óäè~Ë3ÓùÊjÑ0ÌrËPÔ�Ñ1æ~Õ�Ô�æ~Ë�ÌDË:í	Ó´ó@â3ÍäÈ�ó¡È0Ë:Ô1ÌrÔ�Ó´ærË\ñ�Î=ÍäÕ�æLÖ\Ô¦Ç3ÈXÇ3È0Ô¦È�á�æ~è~È0Ë3È�æ~ëqÕXá¦æ~ëqËLÒ
ÔJíPâLÈ0Õ_Ñ�ÌrëqÕ¦È¡Ì@Õ¦Óäè~ËqÓfÊ
Ñ�ÌrËPÔ�ÌDá¦ÈZÌ@âHÈ�ËLÌDÍ´ÔJí	å�Ç3È�Ë�Ñ1ædó¡âLÌDá¦ÈZÒ�Ô�æ�æ~Ô¦ÇqÈ�á.Ó´ó@â3ÍäÈ�ó¡È0Ë:Ô1ÌrÔ�Ó´ædË3ÕZñ&Æ�Ç3È;ë3Õ¦È
ærð�ôHæ~Ô�Ç¡ÐdöJôLæ
�3È�Õ�ÌrËLÒ;óXëqÍ´Ô�Óäâ3ÍäÓ£Ñ0ÌrÔ¦ÓäædË=ð¤ë3á¦Ô�Ç3È�á�Ñ1æ~ó@âLædë3ËLÒPÕgÔ�Ç3È�Ñ�æ~Õ¦ÔhÖPá¦È��dë3Óäá�Ó´Ëqè�ôLædÔ¦Ç¡Ñ1ædË3Õ¦ÓiÒPÈ0á�ÌrôqÍ´È
Õ¦Ô�æ~á1Ìrè~È�ÌDËLÒ�Ñ1æ~Ë3Õ�ÓiÒPÈ�á�ÌDô3ÍäÈ�Íäæ~èdÓ£Ñ+Ô�æXÓäó¡â3ÍäÈ�ó@È�ËPÔZñ
Æ�Ç3ÈïÕ¦ë3ô��dÈ�í è~È�ËqÈ�á�ÌDÔ¦Óäæ~Ë ð¤æ~á¡ôHæ~Ô�ÇU×�Î.Ø=Ð ÌrËLÒ Ø�Ý�ÞïÇLÌhî~È,Õ�È�á¦ÓiÌDÍ=Õ¦Ô�È�â3Õ,å�ÇqÓ£Ñ�Ç á¦È
�~ëqÓ´á�ÈÃÌDÍäÍ

Õ¦ëqô��~È�íPÕXÔ�æêôHÈ�ó¡æ3ÒPÓùÊLÈZÒïÕ�È�î~È�á1ÌrÍ&Ô¦Óäó¡È�ÕhñïÆ�Ç3ÓäÕ¹Ñ�ÌDë3Õ¦È0ÕXÕ¦ë3ô��dÈ�í�èdÈ�Ë3È�á1ÌrÔ�Ó´ædË�Ô�æêôHÈ�î~È�á�í�Õ¦ÍäæråVÓäË
ÇLÌDá�ÒPå�Ìrá�È~Ö~Ì&Õ¦Óäè~ËqÓfÊ
Ñ�ÌrËPÔFÒmÈ1ð÷ÈZÑ1Ô�å�Ç3È�ËXÒPÈZÌrÍäÓäË3è&å�Ó´Ô�Ç¹ÌDâ3â3ÍäÓiÑ�ÌrÔ�Óäæ~Ë3Õ\å�Ç3ÓiÑ¦Ç�á¦È��dë3Óäá¦È�á1Ìrâ3ÓiÒPÍäí�Ñ�ÇLÌrËqè~ÓäË3è
Õ¦ëqô��~È�íPÕhñ
ÐPÈ�á�âLÈ�ËPÔ�È�ËHÒPÕ�ë3â¡ôHÈ�ÓäË3è�Õ�ë3á¦âqá¦ÓäÕ¦ÓäË3èdÍ´í¡Ìhåa�På�Ìrá1Ò
Öró¡ædÕ¦Ô�Í´í;ÒPë3È=Ô�æ_Ô�Ç3È=ÍiÌDá¦è~È&ËPë3óXôLÈ0ágærðFÐdöJôHæ
�mÈ0Õ

á¦È
�~ëqÓ´á�ÈZÒ
ñ�õJÔ'Ô1Ì��~È0Õ�ã
�~Úrà{o�|�Æ�Õ
ß1ë3Õ�Ô'Ô�æ_Õ�Ô¦ædá¦È�ÌDÍäÍLÔ�Ç3È�ÐdöBôHæ
�3È�ÕZñ<Î&ÍäÔ¦Ç3ædë3è~ÇXÔ�Ç3È=âHÈ�áJð¤æ~á¦ó�ÌrËLÑ�È=ÓäÕ'È��:ö
Ñ1È�ÍäÍäÈ�ËPÔZÖdÔ¦ÇqÈ=ôLÌDËLÒPå�ÓiÒPÔ¦Çu�dë3ÓiÑ��:Íäí_Òmá¦æ~âqÕ<ð÷æ~á�Õ¦ó%ÌDÍäÍ´È0á�Óäó¡â3ÍäÈ�ó@È�ËPÔ�ÌDÔ¦Óäæ~Ë3Õ�ÌDËLÒ;Ô¦ÇqÈ=Ìrá¦ÈhÌ8¨râHÈ�áÜð÷æ~á�ó%ÌrËHÑ1È
Õ¦ëmøjÈ�á�Õ.è~á¦ÈhÌrÔ¦ÍäíPñ
ÐPÓäó¡ÓäÍiÌrá�Í´íPÖhÔJå'æXædâLÈ0á�ÌrÔ�Óäæ~Ë3Õ�å�Ç3ÓiÑ�Ç,Ìrá�È�Ñ�Ç3ÈhÌrâ,Õ�ærð÷ÔJå�Ìrá�È~ÖPóXë3ÍäÔ¦Óäâ3ÍäÓiÑ�ÌrÔ�Óäæ~ËXÌrËLÒ#á¦æ~Ô1ÌrÔ�Ó´ædË�ÖPÈ�ËLÒ ë3â

ôHÈ�ÓäË3è¹Ñ�æ~ó¡âHÌrá�ÌDÔ¦Óäî~È0Í´í.È��3âHÈ�Ë3Õ�Ó´îdÈ.Ó´ËXÇHÌrá�Òmå²ÌDá¦È~ñ<Î óXë3ÍäÔ¦Óäâ3ÍäÓäÈ�á�æ3Ñ�Ñ�ë3â3ÓäÈ�Õ�óXëLÑ�ÇXó¡ædá¦È+Íäæ~è~ÓiÑ+Ô�Ç3È�Ë%ÌDË
Ì~ÒqÒPÓäÔ¦Óäæ~ËXÓäË¡ÇHÌrá�Òmå²ÌDá¦È~ÖHÌrËLÒ#Í£ÌDá¦èdÈ=óXë3ÍäÔ¦Óäâ3ÍäÓäÈ�ágÌrá�È.óXëLÑ�Ç¡Ñ1æ~Õ�Ô¦ÍäÓäÈ�á)~<�dñgÐPÓäó¡ÓäÍiÌrá¦Íùí:Öhî~ÌDá¦ÓiÌrô3ÍäÈ�á�æ~Ô�ÌDÔ¦Óäæ~ËqÕ
Ìrá�È,óXëLÑ�Ç ó¡ædá¦È�È��3âLÈ0Ë3Õ¦Óäî~ÈïÓäË ÇLÌrá1ÒPå²ÌDá¦Èïå�Ç3È�ËUÑ�æ~ó¡âHÌrá¦ÈhÒ�Ô�æ Ñ1ædË3Õ¦Ô1ÌrËPÔ¡á�æ~Ô1ÌrÔ¦ÓäædË3ÕZÖas��.Ø³ÕZÖ�ædá
Ì~ÒqÒPÓäÔ¦Óäæ~Ë3Õhñ
õJËLÒPÈ�âHÈ�ËLÒmÈ�ËPÔ¦Íäí�è~È�Ë3È0á�ÌrÔ�ÈZÒ@Õ¦ë3ôL�~È�íPÕ�Õ¦ëHÑ¦Ç,ÌDÕ'Ô�Ç3æ~Õ�È�ÓäË@Æ�å'æDÊLÕ¦Ç@ærø
È�á²Ì�è~á�ÈZÌrÔ�ôHÈ�Ë3È�ÊLÔ+ð÷æ~á+Õ¦ædó¡È

Ìrâqâ3ÍäÓ£Ñ0ÌrÔ¦ÓäædË3ÕZÖgÌDÕXÔ¦Ç3ÓäÕXÌrÍäÍäærå�Õ_ÌrÍäó¡ædÕ¦Ô_Ñ�æ~ó¡âqÍ´È0Ô¦È¡ÇqÓ£ÒmÓ´Ëqè,ærð.Ô¦Ç3È�Õ¦ëqô��~È�íµè~È�ËqÈ�á�ÌDÔ¦Óäæ~Ë Ô¦Óäó@È~ñïÆ�Ç3ÓäÕ
â3á�æ~âHÈ�á¦ÔJí¡ÌDÍ´Íäærå�Õ<Ì.ÇLÌrá1ÒPå�Ìrá¦È�Óäó@â3ÍäÈ�ó¡È�ËPÔ1ÌrÔ¦ÓäædË�Ô�æ�ÌrÍäó¡ædÕ¦ÔFÑ�æ~ó¡âqÍ´È0Ô¦È�Íäí�ærîdÈ�á¦ÍiÌrâ;Õ¦ëqô��~È�íXèdÈ�Ë3È�á1ÌrÔ�Ó´ædË
å�ÓäÔ¦Ç�È�ËLÑ�á¦íPâ3Ô¦ÓäædË ÌDËLÒ�Ñ�ÌrË�á�È�ó¡ærîdÈ=Ô¦ÇqÈ�ËqÈ�ÈZÒ@ð÷ædá=ÌrËPíXÈ��3âLÌDËLÒPÈZÒ�Õ�ë3ô��dÈ�í¡Õ�Ô¦æ~á1ÌrèdÈ~ñ
�Z© 4� D(�=�.<²
(�?a,�W!.)9�(@F
Þ>F�F�Þ6?�#
0
*�W!#
Þ �B� ?�*�W!>+�X,�WX�!.B%A�! �TY#�*�%�>+�X?�.< �>+�8.�(�%B.<(
#�T¯(a��EGF8��E�?�#�0
�W!#�Þ �Z° ?��W!>J�X,�WX�!.R%�P

ã~ã

H I�ÄJ-�½%ÀLK e��.Á	§ gi��½_¾gÿ
×,ÌDË:í;Ô¦ÇHÌrË��PÕ+Ô¦æ â.ÌhîPÓiÒ�ó�ÌDè~Ë3È�á­ð÷æ~ágÈ��mâqÍ£ÌDÓäË3ÓäË3è.Ô¦Ç3È.ÒPÈ�Õ¦ÓäèdË¡ÒPÈZÑ1ÓäÕ¦ÓäædË3Õ²ÌDËLÒ;æ~âHÈ�á1ÌrÔ¦ÓäædË3Õ'æDð�î~Ìrá�Ó´ædë3Õ
ÌrÕ�âLÈhÑ1Ô¦Õ.ærð<Ô¦Ç3È�Ñ1Óäâ3ÇqÈ�á¦Õ.ÌrËLÒ@Ô¦æ¡Ï­í:ÍäædË%Ý�ÌrÕ�â3Ó
ð¤æ~á+Ç3ÓäÕ=Ñ�ÌrâLÌDô3ÍäÈ.ÈZÒPÓäÔ¦ÓäË3èHñ

M �ON8�.¿
��½%Ä��.ÿ
Ùäã1Û�Î=ËHÒPÈ�á¦Õ�æ~Ë�Ö�rgÓäÇLÌDóêÖ�ÌDËLÒQP&ËPëLÒPÕ¦È0Ë�Ö4R�ÐPÈ�á�âLÈ0Ë:Ô
nXÎ w<á¦ædâLædÕ�ÌrÍ�ð÷ædá�Ô¦Ç3È@Î�ÒPî~ÌDËLÑ1ÈZÒ Ï<ËHÑ1á¦íPâ3Ô�Ó´ædË
ÐPÔ1ÌrËLÒ3ÌDá�ÒBSHÖ(TVU�U�W(XZYVY\[>]G^>[G_a`�bc]>Ud_ceVfhgiYkjl`'[l^Gm>W�Unbofp`hYkq�j>]nY'^>fhrB`'sptGY�u0v	w�uOxyez]nY�w\jG^nW�jl`BU�Y�wkjl^nW{jl`BUn_ZW�sn|

Ù�ÚhÛ r�ë3á¦ËPå�ÓiÑ�� j}U qpxfÖ R�Æ�Ç3È ×�Î�Ø&Ð È�ËLÑ1á�íPâ3Ô¦Óäæ~Ë ÌrÍäè~ædá¦ÓäÔ¦Çqó6SLÖ
TVU�UcW'XZY�Yk[}]}^>[G_~`�bc]>Ud_�epfpg�Y\jG`'[l^Gm>W�Udbofp`hYkq�j>]nY(^�fhrB`'sptGYBuOv	w�uOxyez]nY���u0��wVY'�9qh^}]���b~`BUd_yW{s�|

ÙX�hÛ_Ý+Ç3æ3ÒPærå�ÓäÈZÑXÌDËLÒ y Ì0ßrÖOR¦õJó@â3ÍäÈ�ó¡È�ËPÔ1ÌrÔ¦ÓäærË,æDð=Ô¦Ç3È�Æ�å+ærÊLÕ�Ç Ý+íPâ3Ç3È0ám|³Õ¦ÓäË3è�qbw y Î â&È�îPÓiÑ1È�ÕiSLÖ
y È�ædá¦èdÈ�×	ÌrÕ¦ædË�|³Ë3Óäî~È�á�Õ¦ÓäÔJí¡Æ<ÈZÑ�Ç3ÓäË3ÓiÑ�ÌDÍ�Ø�È�âHæ~á�ÔZÖ TVU�U�W(XZYVY(�	�	�	_�[�fprB`BU�jl^nW�qh`'jl_o[>fh�LY�Un��f���]>TV�
|nW�epqp_cTVUn�4x

Ù àrÛ â.ÌrÈ�ó@È�Ë ÌrËLÒ Ø�Ó ß1ó¡È0Ë�Ö R¦Î.ÏgÐ w<á¦ædâLædÕ�ÌrÍBn Ø³Ó ß1ËLÒ3ÌDÈ�ÍcSLÖ
TVU�UcW'XZY�Yk[}]}^>[G_~`�bc]>Ud_�epfpg�Y\jG`'[l^Gm>W�Udbofp`hYkq�j>]nY(^�fhrB`'sptGYBuOv	w�uOxyez]nY���b �l`'sVq�jGx Y���b �G`'s�qVjlx�_ZW�sn|

Ù�ÉhÛ_Ï<Íäô3Óäá¦Ô<ÌrËLÒ{w<Ìrá�áZÖ�R¦Î=Ëuq�w y Î õJó¡âqÍ´È0ó¡È�ËPÔ�ÌDÔ¦ÓäærË�ÌDËLÒ{w�È0áJð÷ædá¦ó%ÌDËLÑ1È�Ï<î~ÌrÍäëLÌDÔ¦Óäæ~Ë.æDðjÔ�Ç3È=ÐPÈ�á�âLÈ�ËPÔ
r�Í´æ3Ñ��XÝ+Ó´âqÇ3È�Ë�SHÖ~ÓäË6u4���9Y�w��p�J��u��G`BU�jG^l`'q�Unbofh`(qhx(w'mh�LW{f�]GbarB��fh`��	bojlx�s0��^�f}e�^>qh�4�%q��Gxcj���q�U�j
uO^G^>qhm�]������.�	uJ�~Ö$qqÈ�ô3á�ëLÌrá�í:Ö3ÚS�8�8�qñ

Ù�ÞhÛ_Ø�ÓäîdÈ�Õ¦ÔhÖ Ø³æ~ô3Õ�ÇLÌhå�Ö ÐmÓ£ÒmË3È�íPÖ ÌDËLÒ ��ÓäË�Ö R¦Æ�ÇqÈ Ø�Ý�Þ r�ÍäæmÑ�� Ý+íPâ3Ç3È�áiSLÖ
TVU�UcW'XZY�Yk[}]}^>[G_~`�bc]>Ud_�epfpg�Y\jG`'[l^Gm>W�Udbofp`hYkq�j>]nY(^�fhrB`'sptGYBuOv	w�uOxyez]nY������}Yk[lbZW�T�jG^G_yW{s�|

Ù�çhÛ_Ð3Ñ�Ç3Ë3È0Ó´È0á j>U qhxùÖ R¦Æ�å+ærÊLÕ�Ç�n Î ãhÚ8`hö<r�Ó´Ô r�Í´æ3Ñ�� Ý+íPâ3Ç3È�áiSLÖ
TVU�UcW'XZY�Yk[}]}^>[G_~`�bc]>Ud_�epfpg�Y\jG`'[l^Gm>W�Udbofp`hYkq�j>]nY(^�fhrB`'sptGYBuOv	w�uOxyez]nY� ���fn��]>T�Y¡ ���f���]>T�_ZW�sn|

ÙX`hÛ�Æ<á¦ÓäÕ�Ñ�È�ËLÒ õJËLÑDÖ R�Æ<á¦ÓäÕ�Ñ1È0ËLÒ ÏgÉ Ý+æ~ËPÊLèdë3á�ÌDô3ÍäÈ ÐPíPÕ¦Ô¦È0óXöJæ~ËPö¦Ý+Ç3Óäâ qLÌDó¡ÓäÍäí�S3Ö
TVU�UcW'XZY�Y'�	�	�¢_cUd^lbc]z[�jl`'sp_o[>fh�LYVW'^>fzspr�[>U�]nYks�]zjl£�[}]zfz[l_ZW�sn|

ÙXvhÛ�s=ÓäÍäÓäËA� õJËLÑrÖ R�t=Óäá¦Ô�È�� Úqñ�É�t q\ÓäÈ�ÍiÒ w<á¦ædè~á�ÌDó¡ó�Ìrô3ÍäÈ y ÌrÔ�È Î&á¦á1Ìhí:ÕiSLÖ
TVU�UcW'XZY�Y'�	�	�¢_c¤�b~x�ba`B¤h_o[>fh�LYVW�qh^}Udba`l|zf>Y\s�]z¥V¥p¦V_ZW�sn|

ãZÚ

1

Comparison of the hardware performance of the AES candidates using reconfigurable hardware

Kris Gaj and Pawel Chodowiec
George Mason University

kgaj@gmu.edu, pchodowi@gmu.edu

Abstract
The results of implementations of all five AES finalists using Xilinx Field Programmable Gate Arrays are presented and analyzed.
Performance of four alternative hardware architectures is discussed and compared. The AES candidates are divided into three classes
depending on their hardware performance characteristics. Recommendation regarding the optimum choice of the algorithms for AES is
provided.

1. Introduction

Hardware implementations of cryptography will thrive in the new century because of the growing
requirements for high-speed, high-volume secure communications combined with physical security. In the
presence of no major breakthroughs in cryptanalysis of the AES candidates, and relatively inconclusive results
of their software performance evaluation [NBD+99, SKW+99], the comparison of the hardware performance of
the AES algorithms may provide a major indicator for a final decision regarding the new standard.

Very few results regarding hardware implementations of the AES candidates have been published so far.
Original documentation provided by designers of the submitted algorithms contains typically only rough
estimates of the hardware performance [BCD+98, RRS+98, SKW+98]. Additionally, these estimates are very
difficult to compare among each other because of large differences in assumptions regarding the technology, and
because of different architecture choices. The results of actual implementations of individual algorithms,
published recently by independent researchers [EP99, RH99], provide only a very fragmentary knowledge, not
suitable for reliable comparison.

This situation will be certainly remedied by the publication of the NSA findings regarding hardware
performance of the AES candidates. Nevertheless, the NSA evaluation plan [NSA98] targets only
implementations using semi-custom Application Specific Integrated Circuits (ASICs), providing no data
regarding other technologies. In this article, we focus on comparing AES candidates using an alternative
hardware technology based on Field Programmable Gate Arrays (FPGAs). This technology, referred to as
reconfigurable hardware, offers many advantages for future vendors and users of cryptographic equipment. It
assures a short time to the market, high flexibility (including a capability for frequent modifications of
hardware), low development costs, and low cost of the final product - the result of the algorithm agility -
capability to use the same integrated circuit with time sharing for the execution of various secret-key and public-
key algorithms. Our comparison supplements the NSA effort by covering the second primary way of
implementing cryptographic algorithms in hardware.

2. Reconfigurable hardware

2.1 Operation and internal structure of an FPGA device

Field Programmable Gate Array (FPGA) is an integrated circuit that can be bought off the shelf and
reconfigured by designers themselves. With each reconfiguration, which takes only a fraction of a second, an
integrated circuit can perform a completely different function. FPGA consists of thousands of universal building
blocks, known as Configurable Logic Blocks (CLBs), connected using programmable interconnects, as shown in
Fig. 1a. Reconfiguration is able to change a function of each CLB and connections among them, leading to a
functionally new digital circuit.

From several FPGA families available on the market, we have chosen for implementing AES candidates
two families from Xilinx, Inc.: high performance Virtex family, and a low-cost XC4000 family. Each family
consists of several FPGA devices, manufactured in the same technology, covering certain range of maximum
circuit sizes.

2

Fig. 1 FPGA device. a) General structure and main components. b) Internal structure of a CLB configured in the logic
mode. c) Internal structure of a CLB configured in the memory mode.

A simplified internal structure of a CLB in the XC4000 family, and a CLB slice (1/2 of a CLB) in the Virtex
family is shown in Figs. 1bc. In the logic mode (Fig. 1b), each of these elementary units contains a small block
of combinational logic, implemented using programmable look-up tables, and two one-bit registers. In the
memory mode, combinational logic is replaced by two small memories. A CLB in the XC4000 family of FPGA
devices and a CLB slice in Virtex are functionally almost identical. Therefore, we will use a number of these
elementary units, necessary to build a given circuit, as a measure of the circuit area and cost.

2.2 Advantages of using reconfigurable hardware for comparison of the AES candidates

For implementing cryptography in hardware, FPGAs provide the only major alternative to custom and semi-
custom Application Specific Integrated Circuits (ASICs), integrated circuits that must be designed all the way
from the behavioral description to the physical layout, and sent for an expensive and time-consuming
fabrication. The comparison of the AES candidates based on FPGA devices has the following advantages over
the comparison based on ASICs:
• Shorter design cycle leading to fully functioning device prototypes.
• Lower cost of the computer-aided design tools, verification, and testing.
• Potential for fast, low-cost multiple reprogramming and experimental testing of a large number of various

architectures and revised versions of the same architecture.
• Higher accuracy of comparison: in the absence of the physical design and fabrication, ASIC designs are

compared based on inaccurate pre-layout simulations [NSA98]; FPGA designs are compared based on very
accurate post-layout simulations and experimental testing.

3. Alternative architectures

3.1 Basic organization of a block cipher implementation

The basic organization of the hardware implementation of a symmetric block cipher is shown in Fig. 2. All
five AES candidates investigated in this paper can be implemented using this organization. The organization
includes the following units:
a. Encryption/decryption unit, used to encipher and decipher input blocks of data.
b. Key scheduling unit, used to compute a set of internal cipher keys based on a single external key.
c. Memory of internal keys, used to store internal keys computed by the key scheduling unit, or loaded to the

integrated circuit through the input interface.
d. Input interface, used to load blocks of input data and internal keys to the circuit, and to store input blocks

awaiting encryption/decryption.

3

Fig. 2 Block diagram of the hardware implementation of a symmetric-block cipher.

e. Output interface, used to temporarily store output from the encryption/decryption unit and send it to the
external memory.

f. Control unit, used to generate control signals for all other units.

3.2 Feedback vs. non-feedback operating modes

Today's symmetric block ciphers are used in several operating modes. From the point of view of hardware
implementations, these modes can be divided into two major categories:
a. Non-feedback modes, such as Electronic Code Book mode (ECB), and counter mode.
b. Feedback modes, such as Cipher Block Chaining mode (CBC), Cipher Feedback Mode (CFB), and Output

Feedback Mode (OFB).
In the non-feedback modes, encryption of each subsequent block of data can be performed independently from
processing other blocks. In particular, all blocks can be encrypted in parallel. In the feedback modes, it is not
possible to start encrypting the next block of data until encryption of the previous block is completed. As a
result, all blocks must be encrypted sequentially, with no capability for parallel processing.

According to current security standards, the encryption of data is performed primarily using feedback
modes, such as CBC and CFB. Non-feedback modes, such as ECB, are used primarily to encrypt session keys
during key distribution. As a result, using current standards does not permit to fully utilize the performance
advantage of the hardware implementations of secret key cryptosystems, based on parallel processing of
multiple blocks of data.

3.3 Alternative architectures for the encryption/decryption unit

a. Basic architecture
The basic hardware architecture used to implement an encryption unit of a typical secret-key cipher is

shown in Fig. 3a. One round of the cipher is implemented as a combinational logic, and supplemented with a
single register and a multiplexer. In the first clock cycle, input block of data is fed to the circuit through the
multiplexer, and stored in the register. In each subsequent clock cycle, one round of the cipher is evaluated, the
result is fed back to the circuit through the multiplexer, and stored in the register. The number of clock cycles
necessary to encrypt a single block of data is equal to the number of cipher rounds, #rounds.

We define the speed of the cipher implementation as the number of bits of data encrypted in a unit of time.
Speed calculated this way is often referred to as the circuit throughput. The speed of the basic architecture,
speedba, is given by

speedba = 128/ #rounds ⋅ clock_period . (1)

4

Fig. 3 Four alternative architectures for implementation of an encryption/decryption unit of a block cipher: a) basic
architecture, b) architecture with the k-round loop unrolling, c) architecture with the k-stage inner-round pipelining, d)
architecture with the k-stage outer-round pipelining.

The basic architecture combines a good speed with the relatively modest area requirements. However there exist
several alternative architectures that permit to improve either one or both of these performance measures.

b. Loop unrolling
Architecture with loop unrolling is shown in Fig. 3b. The only difference compared to the basic architecture

is that the combinational part of the circuit implements k rounds of the cipher, instead of a single round. The
maximum value of k is equal to the number of cipher rounds. The number of clock cycles necessary to encrypt a
single block of data decreases by a factor of k. At the same time the minimum clock period increases by a factor
slightly smaller than k, leading to an overall relatively small increase in the cipher speed, given by

speedlu/speedba = (1 + τ)/(1+τ/k), (2)
where τ is the ratio of the sum of the multiplexer delay, the register delay and the register setup time to the delay
of a single cipher round. This increase in speed is obtained at the cost of the circuit area. Because the
combinational part of the circuit constitutes the majority of the circuit area, the total area of the
encryption/decryption unit increases almost proportionally to the number of unrolled rounds, k. Additionally, the
number of internal keys used in a single clock cycle increases by a factor of k, which in FPGA implementations
typically implies the almost proportional growth in the number of CLBs used to store internal keys.

In summary, loop unrolling enables increasing the circuit speed in both feedback and non-feedback
operating modes. Nevertheless this increase is relatively small, and incurs a large area penalty.

c. Inner-round pipelining
Pipelining is a general method of increasing the amount of data processed by a digital circuit in a unit of

time. The idea is to introduce evenly spaced extra registers in the middle of the combinational circuit, in such a
way that several blocks of data can be processed by the circuit at the same time. Parts of the combinational logic
divided by adjacent registers are called pipeline stages (see Fig. 3c). In each clock cycle the partially processed
data block moves to the next pipeline stage. Its place is taken by the subsequent data block. This way, a
pipelined circuit can encrypt simultaneously as many blocks of data, as the number of pipeline stages it contains.

5

Fig. 4 Operation of the architecture with 4-stage inner-round pipelining for an N-round cipher.

Fig. 5 Timing of input and output blocks in a) basic architecture, b) architecture with a 4-stage inner-round pipelining.

The flow of data through the pipeline during encryption is shown in Fig. 4. The number of pipeline stages in
this example is four. During the first four clock cycles four subsequent blocks of data enter the pipeline. In the
subsequent clock cycles, these blocks circulate in the pipeline. Each four clock cycles correspond to a single
cipher round. In the cycle number 4⋅#rounds+1, the first block, B1, leaves the pipeline, and the fifth block, B5,
is introduced to the empty pipeline stage. In the following three clock cycles, blocks B2, B3, and B4, leave the
pipeline, substituted by blocks B6, B7, and B8. The timing diagram of the input and output of the circuit is
shown in Fig. 5b. Speed of the circuit, expressed as the number of bits processed by the circuit in a unit of time
is given by

 speed = 128/ #rounds ⋅ reduced_clock_period (3)
where reduced_clock_period is a minimum clock period after pipelining.

The dependence between the cipher speed-up resulting from the inner-round pipelining and the number of
evenly spaced pipeline stages is shown in Fig. 6. There exists a maximum number of pipeline stages that still
improves the circuit throughput. Adding additional registers will not affect the throughput. The maximum
number of pipeline stages is determined by the delay of the largest indivisible combinational portion of the
circuit. For majority of ciphers it is difficult to divide the cipher round into combinational stages with equal
delays (especially, when the circuit is described in a high-level hardware description language, such as VHDL),

6

Fig. 6 Speed of the architecture with Fig. 7 Resource sharing of an S-box. a) basic operation of
k-round inner-round pipelining as a function two parallel S-boxes, b) operation with resource sharing.
of the number of evenly spaced pipeline
stages.

which further limits the circuit speed-up. Area of the circuit with inner-round pipelining increases only by a
small percentage (area of a single 128-bit register) with each additional pipeline stage. This is especially true for
FPGA circuits, in which CLBs used to implement combinational logic often contain registers not utilized in the
non-pipelined implementation.

d. Outer-round pipelining
Outer-round pipelining is created by loop unrolling followed by introducing extra registers between parts of

the combinational logic corresponding to each cipher round, as shown in Fig. 3d. The number of unrolled loops
k is typically a divisor of the total number of cipher rounds, #rounds.

Area of the encryption unit with outer-round pipelining is directly proportional to the number of pipeline
stages k. In the non-feedback cipher modes, such as ECB, the speed (throughput) of the cipher increases
proportionally to the number of pipeline stages, k. Therefore, the outer-round pipelining enables to directly trade
circuit speed with circuit area. In the feedback cipher modes, the speed of the cipher remains independent of the
number of outer pipeline stages, and therefore, this kind of pipelining is not recommended for these modes.

e. Resource sharing
For some ciphers, it is possible to further decrease circuit area by time sharing of certain resources (e.g.,

function h in Twofish, 4x4 S-boxes in Serpent, 8x32 S-boxes S0, S1 in the mixing transformation of Mars,
multiplication units in RC6). This is accomplished by using the same functional unit to process two (or more)
parts of the data block in different clock cycles, as shown in Fig. 7b. In Fig. 7a, two parts of the data block, D0
and D1, are processed in parallel, using two independent S-boxes. In Fig. 7b, a single S-box is used to process
two parts of the data block sequentially, during two subsequent clock cycles.

The use of resource sharing in real life implementations is expected to be limited, because
• Gain in the circuit area is always smaller than the loss in the circuit speed.
• The amount of area used by a basic implementation of a symmetric cipher is typically already quite small.

3.4. Choice of the figure of merit

The choice of a single figure of merit is difficult, because the optimization criteria may vary depending on
the application. In our comparison, we took into account three basic figures of merit: maximum speed
(throughput), minimum area, and the maximum speed/area ratio.

Optimization for maximum speed will be done in applications where communication requirements force the
use of a very high speed encryption, and/or the cost of the cryptographic hardware constitutes only a small
portion of the entire system. Examples of such applications include ATM and ISDN switches, Virtual Private

7

Fig. 8 Hardware performance of various alternative architectures in a) non-feedback cipher modes, such as ECB and
counter mode, b) feedback cipher modes, such as CBC, CFB, and OFB.

Network routers and firewalls, WWW and database servers. In such applications, it may be justified to trade the
cost of the cryptographic hardware (proportional to the circuit area) for greater speed.

In the second class of applications, the designer's goal is to obtain the maximum speed, assuming a given
limit on the circuit area (cost). In such situations, the more appropriate figure of merit is the speed/area ratio.
This figure of merit is particularly appropriate for non-feedback cipher modes, which enable one to directly
trade circuit area for speed by using the outer-round pipelining, as shown in Fig. 8a. The examples of cost
critical applications of cryptography include pagers, digital video recorders, and PCMCIA cards.

Applications that require optimization for minimum area include smart cards, embedded systems, and
cellular phones. As the basic architecture may be still too big for such applications, they may enforce resource
sharing. Taking into account the size and power limitations, these applications will be typically implemented
using custom ASICs, not FPGAs.

3.5 Comparison of various architectures

Dependencies between the speed and the area of the encryption/decryption unit of a block cipher, for
architectures discussed in section 3.3, are shown in Fig. 8.

a. Non-feedback modes
For non-feedback modes, the best speed/area ratio can be obtained by using inner-round pipelining with the

maximum number of pipeline stages that still increases circuit clock frequency, as shown in Fig. 8a. The largest
possible speed can be obtained by combining inner-round pipelining with outer-round pipelining. The only limit
on the circuit speed is imposed in this case by the maximum circuit area (cost) and/or the maximum number of
the outer-round pipeline stages (equal to the number of the cipher rounds). The smallest possible area can be
obtained using the basic architecture with resource sharing.

b. Feedback-modes
For feedback modes, the basic architecture offers the best value of the ratio speed/area, as shown in Fig. 8b.

Larger speed can only be obtained using loop unrolling, at the cost of a very significant increase in the circuit
area (cost). Smaller area can only be obtained using resource sharing, at the cost of the significant reduction in
the circuit speed.

Outer-round pipelining is inefficient in these modes, as it does not increase circuit speed, and significantly
increases circuit area. Inner-round pipelining decreases speed, and increases circuit area. As a result, neither
type of pipelining should be used in these operating modes.

8

 4. Assumptions

4.1 Primary assumptions

The following tentative assumptions have been made in order to simplify the task of comparing AES
candidates:
a. Key size 128 bits.
Our implementations are intended to support only one key size, 128 bits. Other key sizes required by AES (192
and 256 bits), or supported by a particular algorithm will be added in the future.
b. No key scheduling unit.
Our implementations do not support the on-chip generation of internal keys from a single external key. Instead,
our implementations include a memory of internal keys loaded with the keys generated externally, and the
circuitry necessary to distribute these keys from the memory to the encryption/decryption unit.
c. Block size 128 bits.
Only one input/output block size, 128 bits, has been considered, even if the given AES candidate supports other
block sizes.
d. Basic architecture
The encryption part of all AES candidates has been implemented using basic architecture shown in Fig. 3a. This
architecture has been chosen for the following reasons:
* As shown in Fig. 8b, the basic architecture assures the maximum speed/area ratio for feedback operating
modes (CBC, CFB), now commonly used for bulk data encryption. It also guarantees near optimum speed, and
near optimum area for these operating modes.
* The basic architecture is relatively easy to implement in a similar way for all AES candidates, which supports
fair comparison. For architectures with inner-round pipelining, it is relatively difficult to determine and
implement the maximum number of pipeline stages that still increases circuit speed and speed/area ratio.
* The implementations of the basic architecture exemplify larger differences among five AES algorithms
compared to the architectures with inner-round pipelining. Inner-round pipelining permits decreasing the
differences in speed among various ciphers because ciphers with longer critical path (lower speed) may be sped
up by a larger factor by introducing proportionally more pipeline stages.
* Based on the performance measures for basic architecture, it is possible to derive analytically approximate
formulas for parameters of more complex architectures, including architectures with outer-round pipelining
(near proportional scaling of both area and speed), loop-unrolling (see formula (2)), and inner-round pipelining
(see formula (3) and Fig. 6). Nevertheless, these formulas should be treated only as a first approximation, and
the more detailed comparison requires the actual implementation of all ciphers using alternative architectures.
Only such implementations may take into account the exact structure of all ciphers, limitations imposed by the
FPGA architecture and the design entry method (e.g., VHDL description), and the optimization capabilities of
the FPGA computer-aided design tools.
e. Resource sharing between the encryption and decryption part

In order to minimize circuit area, it was assumed that the encryption and decryption parts share as many
resources as possible by the given cipher type. The effort was made to maximally decrease the effect of resource
sharing on the speed of encryption and decryption.

4.2 Deviations from the basic architecture

Three ciphers, Twofish, RC6, and Rijndael, have been implemented using exactly the basic architecture
shown in Fig. 3a. This was possible because all rounds of these ciphers perform exactly the same operation. For
the remaining two ciphers, Serpent and Mars, this condition is not fulfilled, and as a result, small deviations
from the basic architecture appeared to be necessary.

Serpent consists of 8 different rounds repeated 4 times. Therefore, it is advantageous to treat 8 official
cipher rounds as a single implementation round, and assume that the cipher has 4 rounds. This way, 8 official
cipher rounds are implemented in the basic architecture as a combinational logic. This implementation
guarantees the maximum speed/area ratio typical for the basic architecture.

9

In Mars, there exist four different kinds of rounds, each repeated
8 times: forward mixing, forward keyed transformation, backwards
keyed transformation, and backwards mixing. It is possible to
implement forward and backwards mixing using the same functional
unit; the same holds for the forward and backwards keyed
transformation. The structure of the mixing transformation and the
keyed transformation are significantly different, and as a result they
must be implemented using separate units, as shown in Fig. 9. Both
of these units have an internal structure that corresponds to the basic
architecture (multiplexer + register + combinational logic).
Additionally, both units share the look-up table implementing two

Fig. 9 Deviation from the basic architecture 8x32 S-boxes.
in Mars.

5. Results

5.1 Results for the Virtex family

The results of implementing AES candidates, according to the assumptions summarized in section 4, using
the largest currently available Xilinx Virtex device, XCV1000BG560-6, are summarized in Fig. 10. For
comparison, the results of implementing the current NIST standard, Triple DES, are also provided It should be
stressed that all results come either from simulation or from reports generated by Xilinx tools, and have not as
yet been confirmed experimentally. The details of all implementations, including the detailed block diagrams,
and the description of simulation and test experiments will be provided in the technical report available at the
AES conference [CG00]. Part of this report, describing Twofish, is already available on the web [CG99].

Implementations of all ciphers take from 9% (for Twofish) to 38% (for Serpent) of the total number of
12288 CLB slices available in the Virtex device used in our designs. It means that less expensive Virtex devices
could be used for all implementations. Additionally, the key scheduling unit can be easily implemented within
the same device as the encryption/decryption unit.

5.2 Results for the XC4000 family

For the low-cost, medium-size family of Xilinx FPGA devices, XC4000, only two ciphers, Twofish and
RC6, were able to fit within the largest device from this family. The relative performance of these ciphers is
similar to the relative performance in Virtex implementations. It is interesting to notice that for the two different
FPGA devices from this family, the smaller one guarantees the higher speed.

Speed [Mbit/s] Area [CLBs] Speed/Area [kbit/s⋅⋅CLB]Cipher
4028/4036 4085 4028/4036 4085 4028/4036 4085

Twofish 90.9 89.2 907 907 100.2 98.3
RC6 45.9 43.1 1222 1222 37.6 35.3

Table I. Results of implementing Twofish and RC6 using the largest available FPGA device from the XC4000XL family,
XC4085XL, and the largest device fitting the implementation of the respective cipher, i.e., XC4028XL for Twofish, and
XC4036XL for RC6.

5.3 Resource sharing between encryption and decryption

The amount of resource sharing between encryption and decryption is considerably different for various
AES candidates, depending on the type of the cipher. Resource sharing is close to 100% for Feistel ciphers and
modified Feistel ciphers, and close to zero for S-P networks. The level of resource sharing can be described by
the amount and type of the extra logic that must be added to the circuit implementing encryption, so that the
modified circuit can perform both encryption and decryption, as shown in Table II.

10

Fig. 10 Results of implementing AES candidates using Xilinx Virtex FPGA devices.

11

Fig. 11 Combinational part of a single round of RC6 implemented using basic architecture. Shaded components had to be
added to the encryption unit, so it could perform decryption. The thick line shows the critical path in the circuit. Unit F
performs operation (2(X2 mod 232)+ X) mod 232 <<< 5. An arrow around a line means inverting the order of bits.

The relative size of the extra circuitry is the smallest for Mars and Twofish (less than 10%), and about 20%
for RC6 (see Fig. 11). For Serpent and Rijndael, encryption and decryption are performed by two independent
units of equal size. For Rijndael, these two units share 16 look-up tables implementing inversions in the Galois
Field GF(28). These look-up tables take about 45% of the area used for encryption. Thus, the extra decryption
circuitry takes for Serpent 100%, and for Rijndael about 55% of the area required for encryption itself.

Cipher Extra logic Extra logic area /encryption logic area
Twofish 2 32-bit XOR2, 2 32-bit MUX2 6%
Mars 2 SUB32, 3 32-bit MUX2 3%
RC6 2 SUB32, 2 32-bit XOR2, 8 32-bit MUX2 (see Fig. 11) 20%
Rijndael Decryption independent of encryption, except 16 S-boxes 8x8 55%
Serpent Decryption independent of encryption 100%

Table II. Extra logic that must be added to the circuit implementing encryption, so that the modified circuit can perform
both encryption and decryption. Notation: XOR2 - 2-input XOR, MUX2 - 2-input multiplexer, SUB32 - 32-bit subtractor.

5.4 Critical path

The critical paths of all five AES candidates are characterized in Table III. As an example, the critical path
of RC6 (without init MUX) is shown in Fig. 11.

Based on the characteristics of the critical path, the AES candidates can be divided into two main categories.
Ciphers from the first category, RC6 and Mars, include in the critical path one complex arithmetic operation,
such as modular multiplication or modular squaring, which determines the minimum clock period of these
ciphers. The second category includes Rijndael, Twofish, and Serpent. In these ciphers, the critical path includes
one or several S-boxes, and several multiple-input XORs. The minimum clock period is the sum of the access
time to memories used to implement S-boxes, and delays introduced by multiple-input XORs and other simple
auxiliary operations. The critical path of Twofish contains additionally two 32-bit additions.

The effect of resource sharing between encryption and decryption on the critical path is the strongest for
RC6 (three encryption/decryption multiplexers in the critical path), very small for Rijndael, Twofish and Mars
(one encryption/decryption multiplexer in the critical path), and negligible for Serpent. In Mars, additional delay
(2 multiplexers) is caused by sharing resources between the forward and backwards keyed transformations.

12

Cipher Minimum
clock

period - Virtex
[ns]

Minimum
clock period -
XC4000 [ns]

Number
of rounds

Components in the critical path
(path flow / list of operations)

E/D MUX → S-box → affine transformation →
MixColumn → init MUX

Rijndael 38.6 - 10

S-box 8x8, XOR6, XOR5, XOR4, XOR2, 2 MUX2
S-box → MDS → PHT → key addition → xor → E/D
MUX → init MUX

Twofish 45.1 88.0 16

6 S-box 4x4, 2 ADD32, 9 XOR2, XOR4, XOR5, 2
MUX2
8 x {key mixing → S-box → linear transformation) →
init MUX

Serpent 94.3 - 4

8 S-box 4x4, 8 XOR2, 8 XOR7, MUX2
E/D MUX → squaring → addition → xor → E/D
MUX → variable rotation → addition → E/D MUX →
init MUX

RC6 61.6 139.5 20

SQR32, 2 ADD32, ROT32, XOR2, 4 MUX2
2 mode MUXes → E/D MUX → multiplication →
XOR → init MUX

Mars 100.6 - 32

MUL32, XOR2, 4 MUX2

Table III. Critical paths in the implementation of the basic architecture for all AES candidates. Notation:
E/D MUX - encryption/decryption multiplexer, i.e., multiplexer used to change the data flow between encryption and
decryption; mode MUX - multiplexer used to change the data flow depending on the mode of transformation (e.g., forward
and backwards transformation in Mars); init MUX - multiplexer used to select between loading a new block of data and
feeding back data from the end of the cipher round (the only multiplexer shown in Fig. 3a); XORn - n-input XOR, MUX2 -
2-input multiplexer, ADD32 - 32-bit adder, MUL32 - 32-bit multiplier mod 232, SQR32 - 32-bit squaring mod 232, ROT32 -
variable rotation of a 32-bit word.

5.5 Area critical components

The components contributing most to the circuit area, for each AES candidate, are shown in Table IV. The
ciphers fall clearly into two groups: Twofish and RC6 have the area approximately three to four times smaller
than the area of the remaining three candidates, Mars, Rijndael, and Serpent. The relatively small area of
Twofish and RC6 comes from the fact that both ciphers are of the Feistel type. The relatively large size of
Serpent and Rijndael comes from the fact that both ciphers are S-P networks, and the amount of resource
sharing between encryption and decryption is limited (no resource sharing for Serpent, about 45% resource
sharing for Rijndael). Additional factor contributing to the large size of Serpent is the use of eight different types
of S-boxes in eight subsequent cipher rounds.

Cipher # of CLB slices
- Virtex

of CLBs -
XC4000

Area critical components

Twofish 1076 907 96 S-box 4x4 (6 kbit), 18 32-bit XOR2, 24 MUL GF(28)
RC6 1139 1222 2 SQR32, 12 32-bit MUX2, 2 ROT32
Serpent 4438 - 512 S-box 4x4 (32 kbit), 2048 XORn (linear transformation,

n=2..7)
Mars 2737 - 4 S-box 8x32 (32 kbit), MUL32, 22 32-bit MUX2
Rijndael 2902 - 16 S-box 8x8 (32 kbit), 24 MUL GF(28), 256 XOR5 (affine and

inverse affine transformation)

Table IV. Cipher components contributing most to the circuit area. Notation: MUL GF(28) - multiplication in the
Galois Field GF(28), XORn - n-input XOR, MUX2 - 2-input multiplexer, MUL32 - 32-bit multiplier mod 232, SQR32 - 32-
bit squaring mod 232, ROT32 - variable rotation of a 32-bit word.

13

The relatively large size of Mars is the result of the design decisions, such as
a. using two different kinds of rounds (mixing vs. keyed transformation). For the basic non-pipelined

architecture, only one type of round is active at a time.
b. using 4 large S-boxes 8x32 in a single round of the mixing transformation. Sharing two of these S-boxes

during mixing transformation is possible only at the cost of doubling the number of clock cycles required for
this transformation. (Our implementation still shares two S-boxes between the mixing transformation and
the keyed transformation.)

c. using area-consuming 32x32 bit modular multiplication.
The area of Mars, Serpent, and Rijndael is dominated by S-boxes. Even though the number and size of these

S-boxes is very different for each cipher, the total number of bits in memories implementing S-boxes, 32 kbits,
is identical for all three ciphers. This may explain the relatively similar size of all three implementations
expressed in number of CLBs.

5.6 Potential for inner-round pipelinig

Inner round pipelining can be most effectively applied to the ciphers with the following features:
a. the cipher round is composed of a large number of layers, with all layers performing simple operations with

comparable delays;
b. the cipher round does not contain large hard-to-divide functional units.
Additionally, for FPGA implementations, it is advantageous if the implementation of the basic architecture
contains large number of CLBs with unused flip-flops (one bit registers).

The above conditions are the best fulfilled by Serpent. It is straightforward to introduce 8 internal pipeline
stages to the implementation round of Serpent (one implementation round = 8 regular cipher rounds), one after
each regular cipher round. Implementing pipeline stages inside of the regular cipher round is possible in theory,
but may be difficult in practice because of the clock frequency limitations imposed by the control unit.

The second cipher best suited for inner-round pipelining is Twofish. According to Table III, the critical path
of Twofish contains a large number of simple operations with comparable delays, including a 4x4 S-box read-
out, XOR operations, and additions. The most complex of these operations is a 32-bit addition. It is likely that
this operation may need to be implemented using multilevel carry-lookahead architecture to take the full
advantage of the inner-round pipelining in Twofish. Additionally, the FPGA implementation of basic
architecture of Twofish contains a relatively small number of unused flip-flops, which will cause that the circuit
area will increase by a larger percentage than for Serpent with the same number of inner-round pipeline stages.

Rijndeal is relatively easy to pipeline, but its critical path contains only 7 elementary operations.
Additionally, the most time-consuming of these operations, the 8x8 S-box read-out, is hard to divide into extra
pipeline stages. RC6 can be efficiently pipelined at the cost of increase in the circuit area resulting from using
fast architectures for addition and multiplication (e.g., carry lookahead and carry save). Mars is the most
difficult to pipeline because of the
a. irregular structure with different operations in various paths;
b. two types of rounds (mixing and keyed transformation) both using large S boxes;
c. need for the complex fast architectures for the pipelined multiplication and addition.

5.7 Potential for loop unrolling

The largest gain from loop unrolling can be achieved by ciphers with the following properties:
* small area used by the combinational part of a single round, which permits fitting a large amount of rounds in
the largest available FPGA device;
* small delay of a single round compared to the sum of delays eliminated by loop unrolling, including the round
multiplexer delay, the register delay, and the register setup time (as shown in formula (2)).
* potential for optimizations at the boundary between the last and the first operation of the cipher round.

Assuming the use of the largest available Virtex chip, RC6 and Twofish have the highest potential for loop
unrolling. The largest Virtex chip can easily fit ten RC6 rounds and eight Twofish rounds. Mars can be
implemented with four rounds unrolled; Rijndael and Serpent with only two rounds unrolled.

14

5.8 Potential for outer-round pipelining and mixed outer-inner-round pipelining

The largest gain from outer-round pipelining can be achieved by ciphers with the smallest area. The largest
number of pipelined rounds fitting within the largest available Virtex chip is the same as in the architecture with
loop unrolling. As a result, Twofish and RC6 can benefit most from the outer-round pipelined architecture. The
throughput of both these ciphers exceeds 1 Gbit/s for the architectures with the maximum number of outer-
round pipeline stages. Additional speed-up can be obtained by combining outer and inner round pipelining,
leading to the mulitigigabit-per-second performance. For Serpent, the most straightforward form of mixed
pipelining, with 16 regular cipher rounds unrolled and a register after each regular cipher round (1/8 of the
implementation round), would result in an even higher performance. Mars can benefit substantially from both
forms of pipelining; Rijndael primarily from the inner-round pipelining.

6. Design procedure and tools

The design flow and tools used in our group for implementation of algorithms in FPGA devices are shown
in Fig. 12. All five AES ciphers were first described in VHDL, and their description verified using the
functional simulator from Aldec, Inc. Test vectors and intermediate results from the reference software

implementations were used for debugging and verification
of VHDL codes. The revised VHDL code became an input
to Xilinx tools performing the automated logic synthesis,
mapping, placing, and routing. These tools generated
reports describing the area and speed of implementations,
a netlist used for timing simulations, and a bitstream to be
used to program an actual FPGA device. A final step is to
verify the design experimentally, using physical FPGA
devices. We plan to perform these experiments using a PCI
FPGA board from Virtual Computer Corporation [VCC].
The most complex PCI board currently available from
VCC is based on the XC4062XL FPGA device. This
device is able to fit full implementations of Twofish and
RC6, and an encryption portion of Serpent. All details of

Fig. 12 Design flow for implementing AES our implementations and experiments will be described
candidates using Xilinx FPGA devices. in the technical report [CG00].

7. Need for interleaved operating modes

The full potential of hardware implementations of symmetric block ciphers can only be utilized in cipher
modes that support efficient use of pipelining, as shown in Fig. 8. To date, the ECB mode is the only operating
mode standardized by NIST that supports efficient pipelining. However, ECB is not regarded secure for
transmissions of large volumes of data, and most standard protocols recommend using CBC or CFB modes
instead. Therefore, we propose to speed-up the standardization effort, and include in the AES standard
interleaved modes of operation, such as the interleaved CBC mode defined by:

Ci = AES(Mi ⊕ IVi) for i=1 to N, and Ci = AES(Mi ⊕ Ci-N) for i>N . (4)
The standard should support arbitrary values of the interleaving factor N, smaller than a certain maximum.

8. Conclusions

The results and analyses presented in this paper show that the differences in hardware performance of the
AES candidates are bigger and more significant than the corresponding differences in software performance. No
correlation between software and hardware performance was found. On the contrary, Serpent, believed to be the
slowest candidate in software, appeared to be the fastest of the five AES candidates in hardware. We believe that
the large differences among parameters of all five AES algorithms in hardware resulted primarily from internal
structure of these algorithms, and were not significantly affected by our implementation decisions. On the other

15

hand, we could not completely eliminate or predict the influence of the FPGA design tools and the VHDL
design entry method on the results of the comparison. Assessed exclusively from the hardware performance
point of view, the five AES finalists fall into the three distinct classes with different performance characteristics.

The first class includes Twofish and RC6. Both ciphers guarantee compact low-cost implementations with
medium speed compared to other candidates. In particular, because of the area constraints, Twofish and RC6 are
the only ciphers that can be implemented using low cost FPGA devices from the Xilinx XC4000 family. Both
ciphers can be substantially sped-up by outer-round pipelining (for non-feedback modes (ECB, counter mode)),
and - to the lesser extent - by loop-unrolling (for cipher feedback modes (CBC, CFB)). Among the two, Twofish
is in some respects superior to RC6. It is about 70% faster and is more suitable for inner-round pipelining. Both
ciphers use comparable area, and as a result their potential for loop unrolling and outer-round pipelining is
similar.

The second class includes Serpent and Rijndael. Both ciphers guarantee very high speed at the cost of the
relatively large area compared to the ciphers from the first class. The primary way of speeding up these ciphers
for non-feedback cipher modes (ECB and counter mode) is inner-round pipelining. Both ciphers have a similar
speed in the basic architecture. Rijndael can be implemented using about 35% less area. The more regular
architecture of Serpent makes it significantly more suitable for a multi-stage inner-round pipelining.

The third class is composed of Mars itself. This cipher shows the worst hardware characteristics of all five
candidates. It is over twice as slow than the next slowest candidate (RC6), and over 8 times slower than the
fastest AES cipher (Serpent). It also takes over twice the area used by ciphers from the first group, Twofish and
RC6. Further optimizations of the Mars implementation are certainly possible, but would require the higher
development effort than that devoted to other AES candidates.

It is interesting to notice that although four out of five candidates outperform Triple DES in terms of speed,
only Twofish has a comparable performance in terms of the speed/area ratio. Three other candidates, Rijndael,
RC6, and Serpent, have a similar, and much lower than triple DES, value of this performance parameter.

Out of all five candidates, Twofish seems to be the most suitable for applications where the primary
requirement is the limited cost or area of the cryptographic hardware. Serpent and Rijndael both offer superior
performance for applications where the speed itself is a criterion of primary concern.

Acknowledgments
The authors would like to thank Christof Paar and his students, as well as Miles Smid and other members of the NIST
Computer Security Division for valuable comments and discussions. We also would like to thank our students, Po Khuon
and Tanvir Joy, for their work on implementation of Triple DES.

Literature:

[BCD+98] C. Burwick, D. Coppersmith, E. D'Avignon, R. Gennaro, S. Halevi, C. Jutla, S. M. Matyas, L. O'Connor, M.
Peyravian, D. Safford, and N. Zunic, "Mars - A Candidate Cipher for AES," NIST AES Proposal, June 1998.
[CG99] P. Chodowiec and K. Gaj, "Implementation of the Twofish Cipher Using FPGA Devices", Technical Report,
George Mason University, July 1999; available at http://www.counterpane.com/twofish.html.
[CG00] P. Chodowiec and K. Gaj, "Implementations of the AES Candidate Algorithms using FPGA Devices," Technical
Report, George Mason University, April 2000 (to be published on the web).
[EP99] A.J. Elbirt and C. Paar, "An FPGA Implementation and Performance Evaluation of the Serpent Block Cipher,"
Eighth ACM International Symposium on Field-Programmable Gate Arrays, Monterey, California, February 10-11, 2000.
Preprint available at http://ece.wpi.edu/Research/crypt/publications/index.html.
[NBD+99] James Nechvatal, Elaine Barker, Donna Dodson, Morris Dworkin, James Foti, Edward Roback, "Status Report
on the First Round of the Development of the Advanced Encryption Standard," NIST report, August 1999.
[NSA98] National Security Agency, "Initial plans for estimating the hardware performance of AES submissions,"
http://csrc.nist.gov/encryption/aes/round2/round2.htm.
[RH99] M. Riaz and H. Heys, "The FPGA Implementation of RC6 and CAST-256 Encryption Algorithms," accepted for
CCECE'99, Edmonton, Alberta, Canada, 1999.
[RRS+98] R. Rivest, M. Robshaw, R. Sidney, and Y. L. Yin, "The RC6 Block Cipher," NIST AES Proposal, June 1998.
[SKW+98] B. Schneier, J. Kelsey, D. Whiting, D. Wagner, C. Hall, N. Ferguson, "Twofish: A 128-Bit Block Cipher,"
NIST AES Proposal, June 1998.
[SKW+99] B. Schneier, J. Kelsey, D. Whiting, D. Wagner, C. Hall, N. Ferguson, "Performance Comparison of the AES
Submissions," Second AES Candidate Conference, Rome, April 1999.
[VCC] Virtual Computer Corporation, http://www.vcc.com/

Session 2:

"Platform-Specific Evaluations"

1

AES Finalists on PA-RISC and IA-64:
Implementations & Performance

John Worley, Bill Worley, Tom Christian, Christopher Worley1

Hewlett Packard Labs
Fort Collins, CO

Overview
The Advanced Encryption Standard selection process has, for the first time, included software execution speed as a relevant

criterion for the choice of the next standard. The initial submissions included keying, encryption, and decryption execution times, in
clock cycles, for Intel Pentium, Pentium II, and Pentium Pro microprocessors. While Pentium execution speeds are important, by no
means do they completely characterize software performance, particularly that of existing RISC microprocessors and the new IA-64
microprocessor family.

In order to enable a more complete characterization of software performance, our group, working from HP Labs, decided in January
1999, to study and publish the performance of likely AES finalists for PA-RISC and IA-64 microprocessors. We initially selected RC6,
Rijndael, Serpent, and Twofish. Our preliminary results were informally presented at the 1999 Rome Conference. Following the selection
of the five finalists, we included work on MARS. This paper discusses the issues, implementations, and results of our work for each of
the five AES finalists.

Details of specific engineering tradeoffs for Itanium and McKinley chips remain proprietary. We therefore are not at liberty to
disclose complete source codes and performance details from which such information can be deduced. What we have chosen to present
are actual simulation cycle counts for a snapshot of the evolving McKinley design. These are not cycle counts for an actual product. We
offer them as well-substantiated, conservative indicators of the performance of the future family of IA-64 processors. Itanium will be
somewhat slower; future implementations will be faster. We believe these results do provide a reasonable basis for software performance
judgments about the AES finalists. A summary table appears at the end of the paper.

In addition to processor cycle count, we also present PA-RISC and IA-64 code sizes, register usage, and instruction-level
parallelism. Finally, we describe the programming approaches we employed for effective use of both architectures. We would be happy
to share full details with the finalists' authors under non-disclosure terms.

Methodology
We focused on hand-optimized assembly language implementations of the algorithms for 128-bit keys and 128-bit blocks, using

compiled codes as sanity checkers. We agree with Bruce Schneier that AES codes will be implemented in this manner in actual systems;
this also leads to the clearest comparisons between instruction set architectures. Codes for this study were optimized for performance, not
code size or table size.

For PA-RISC we measured execution speeds on a PA-8500. We timed executions using the PA-RISC 64-bit interval timer, which
counts actual clock cycles. To eliminate cache and system effects, we ran tens of millions of executions, varying keys and data blocks on
a lightly loaded system, and profiled those runs with minimum cycle counts. We observed that runs often would differ by only a few
cycles, and that the cycle counts formed Gaussian distributions. It was further observed that the input value (input key for keying, data
block for encryption/decryption) noticeably affected performance for algorithms that used table look-ups. Thus, while the PA-RISC times
are best observed times, we also show the distribution's average and maximum values.

Lacking IA-64 hardware, we employed three different types of simulators. Initial debugging used a fairly fast and purely functional
instruction set simulator. The second type was considerably slower, but simulated parallel execution, latencies, and memory hierarchy
behavior. This was used for additional code validation and preliminary execution cycle counts.

These simulators, while useful, did not guarantee absolute fidelity to the chip designs. Therefore, final timings used fully simulated
RTL designs of the Merced (now Itanium) and McKinley chips. This approach was extremely slow, and our results often varied from day
to day, as engineers improved their designs. We constructed special tools that automatically prepared test inputs and displayed the cycle-
by-cycle behavior of the microprocessor pipeline. The memory hierarchy was initialized for each run, and the timing could be computed
by subtracting cycle numbers from the pipeline output.

Notation
A <<< n Left rotation by n bits
A >>> n Right rotation by n bits
A ⊕ B Bit-wise Exclusive-OR
A +.× B Matrix multiplication
[b0, b1, ..., bn] Column vector, LSB first

PA-RISC Facts
PA-RISC first shipped in 1986 and is the processor for Hewlett-Packard's RISC workstation and server products. Architecture

features include 64-bit virtual addressing, 32 general-purpose registers, and 32 floating point registers. Current processors implement the
64-bit Version 2.0 of the PA-RISC architecture.

1 John S. Worley jworley@fc.hp.com William S. Worley, Jr. worley@hpl.hp.com
Tom W. Christian twc@fc.hp.com Christopher S. Worley cworley@fc.hp.com

AES Implementations & Performance

2

This study utilized the PA-8200 and PA-8500 microprocessor chips. Both of these chips are out-of-order superscalar designs,
capable of executing two memory operations and two integer or floating point instructions per cycle. Only one store instruction can
complete per cycle. Careful software scheduling is required to realize the full parallelism.

IA-64 Overview
This section provides a very brief overview of the IA-64, highlighting features in the discussions that follow. Readers familiar with

the architecture can skip this section.

Parallelism and Functional Units
The majority of processor architectures specify sequential instruction execution. Microarchitectures then employ superscalar logic to

issue multiple instructions in parallel whenever possible. In contrast, the IA-64 architecture puts all the parallelism cards on the table.
There are four types of functional units: M (memory), I (integer), F (floating point), and B (branch); each IA-64 implementation has two
or more of each of these units. IA-64 hardware detects when program parallelism exceeds the capabilities of the implementation, but
responsibility for organizing instructions to execute in parallel is wholly with the programmer or compiler.

Instructions, Bundles, and Issue Groups
There is a corresponding instruction class for each functional unit type, although a specific instruction may not be able to execute on

all units of that type in a given implementation. In addition, there is an A (ALU) instruction class that can execute on both I and M units.
A instructions include most integer arithmetic and logical operations, so that otherwise idle memory units can be used for parallel
computation.

Three instructions are grouped into a bundle, where all instructions in the bundle may be eligible to be issued in parallel to
functional units specified by the bundle type. Sequential bundles that can issue in parallel form an issue group. One characteristic of an
IA-64 implementation is the maximum number of bundles that can issue together. For example, a processor that can issue at most two
bundles in one cycle is referred to as a “two-banger.”2

Registers and the Register Stack
IA-64 provides 128 64-bit integer registers. The low 32 registers (r0 - r31) are common for all code. For function arguments and

local values, each procedure can allocate up to 96 additional registers in a register stack frame. Saving and restoring registers in the
register stack is handled by an independent hardware thread, so that no registers need to be saved and restored explicitly.

In addition to the integer registers, IA-64 provides 128 extended precision (64-bit mantissa, 17-bit exponent) floating point
registers, 64 1-bit predicate registers (see below), and eight branch registers for indirect branches.

Predication
A powerful feature of IA-64 is instruction predication. Every instruction, except for certain branch and control instructions, is

predicated, i.e., its execution is enabled or disabled by one of the 64 predicate bits. One predicate, p0, is hardwired to ‘1’ for instructions
that execute unconditionally or cannot be predicated. Predicates are set or cleared by compare instructions and certain floating-point
instructions. Also, the 64 predicates can be read or set in parallel using special instructions. Predication allows, for example, one of two
instructions to execute based on a comparison condition, or for instructions to be enabled during the first pass of a loop and disabled for
all subsequent iterations.

Counted Loops
IA-64 provides hardware support for counted loops. The special registers ar.lc (loop counter) and ar.ec (epilogue counter)

control when the branch instructions br.ctop and br.cexit are taken. For example, if ar.lc is set to 9 and ar.ec is set to 0, a
counted loop will execute 10 times if the loop ends with br.ctop, 9 times if the loop begins with br.cexit. The hardware is
designed to predict perfectly when a branch will be taken or fall through, so that counted loops can execute with no branch penalties.

Rotating Registers
When a subroutine allocates a register stack frame, some or all of the local registers, starting from r32, can be set to rotate. Each

time a counted loop branch is taken, the rotating registers are circularly renamed such that the next iteration of the loop can operate on
different data without changing the register name. For example, if there are eight registers designated as rotating, the renaming is as
follows:

r32 → r33 → r34 → r35 → r36 → r37 → r38 → r39 → r32

Fixed portions of the floating point and predicate registers also rotate. The high 96 floating point registers (f32 through f127)
rotate. The high 48 predicate registers (p16 to p63) also rotate, but with a slight difference. While the loop counter ar.lc is non-zero,
a ‘1’ value is shifted into p16; if ar.lc is zero and the epilogue counter ar.ec > 1, a ‘0’ value is shifted in instead.

Programming Issues
There are three operations commonly used in cryptographic algorithms that are not fully realized in the integer hardware on PA-

RISC and IA-64: fixed 32-bit rotations, variable 32-bit rotations, and 32x32→32 unsigned integer multiplies.

2 This term comes from the slang term for a two-cylinder engine. While three-banger or more implementations are foreseeable, it

seems unlikely that IA-64 will ever give rise to, say, a V12.

AES Implementations & Performance

3

PA-RISC
On PA-RISC, fixed rotations can be executed in one cycle using the shift right pair word (shrpw) instruction. This instruction

concatenates the low 31 and 32 bits from left and right source registers, respectively, shifts right the specified distance, and leaves the
high 32 bits undefined. If the two source registers are the same, the low bits are concatenated with the high bits, exactly as would occur
in a rotation. Thus, fixed rotations on PA-RISC can be defined as follows:

ROTR .macro src, dst, count
shrpw src, src, count, dst
.endm

ROTL .macro src, dst, count
shrpw src, src, 32 - count, dst
.endm

Variable rotations use the same strategy, except that an extra cycle is required to move the shift distance into the SAR (shift amount
register). For a right rotation, the actual shift distance is used. For a left rotation, the 5-bit complement of the distance is used and the
value is pair-shifted right one before the variable shift. The left shift also executes in two cycles since the mtsarcm (move to SAR
complement) and the first shrpw can issue in the same cycle on the PA-8000 family.

Integer multiplication on PA-RISC requires using the unsigned integer multiply in the floating point unit. Since the only path for
moving data between the integer and floating point units is memory, the multiplicands must be stored, loaded into the FPU, multiplied,
stored again, and reloaded into the integer unit. This adds latencies on both sides of the multiply, in addition to the multiply time itself.

IA-64
Although the IA-64 architecture has a shift right register pair instruction, it only operates on full 64-bit registers. This can still be

used to implement 32-bit fixed rotations in two cycles as follows:
dep.z TMP = src, 32, 32
shrp dst = src, TMP, count + 32

for right rotations, and
dep.z TMP = src, 32, 32
shrp dst = src, TMP, 64 - count

for left rotations.
The dep.z instruction puts the low 32 bits of the source register in the high half of a temporary register, clearing the low half. The

pair-shift concatenates the low bits with the high bits and shifts far enough to put the proper set of bits in the low half of the destination.
Like the PA-RISC instruction, the destination’s high half is not cleared. None of the AES finalists require these bits to be cleared;
however, the zxt4 instruction can be used if necessary.

On IA-64, variable rotates are implemented much as in the C language: shift left j, shift right (32 - j), OR or ADD the results
together. This involves four operations and a minimum of three cycles. The variable shifts are executed on the multimedia units (MMUs).

Like PA-RISC, the IA-64 primary integer multiply is implemented on the floating point unit and involves latency cycles to move
back and forth. However, 16x16 MMU multiplies and parallel adds can be used to compute and sum the partial products instead. This is
effective when only the low 32 bits of the result are of interest. In particular, the parallel 16-bit unsigned multiply and shift instruction
(pmpyshr.u) can be used to complete a 32x32→32 multiply.

If we consider multiplicands derived from A as four 16-bit elements, A2 can be computed with two multiplies and two adds as
follows:

0 0 AHI ALO *>>0 0 0 ALO ALO = 0 0 AHIALO<15..0> ALO
2<15..0>

+

0 0 ALO 0 *>>16 0 0 ALO ALO = 0 0 ALO
2<31..16> 0

+

0 0 AHIALO<15..0> 0

One of the operands is just the argument, A. The other two arguments are generated by the 16-bit mux MMU instructions; the
additional addend is derived from the first product using the 16-bit mix instruction. The general 32x32→32 requires three multiplies and
two additions. If we consider multiplicands derived from A and B as four 16-bit elements, the operations are:

0 0 AHI ALO *>>0 0 0 BLO BLO = 0 0 AHIBLO<15..0> ALOBLO<15..0>

+

0 0 ALO 0 *>>0 0 0 BHI BLO = 0 0 ALOBHI<15..0> 0

+

0 0 ALO 0 *>>16 0 0 BLO BLO = 0 0 ALOBLO<31..16> 0

Two of the operands are just the arguments, A and B. The other two arguments are generated by the 16-bit mix and mux MMU
instructions.

AES Implementations & Performance

4

It has been noted that with better hardware support for 32-bit rotations and 32x32→32 multiplication, all the AES finalists will
outperform Pentium on IA-64. In the performance analysis for each algorithm, we have estimated performance for a hypothetical IA-64
implementation, called IA-64++, with the following enhancements:

• A single-cycle shift right pair word instruction, as in PA-RISC
• Single-cycle, 32-bit, left and right variable rotate instructions
• A two-cycle 32x32→32 unsigned multiply

Mars
The Mars encryption scheme (IBM team) uses a mix of approaches: substitution boxes, Feistel networks, multiplication, and fixed

and variable rotates. The single substitution box, S[], is fixed, and is employed both as a 512 word array (9-bit index), and as low
(S0[]) and high (S1[]) 256 word arrays (8-bit index). The principal challenges for PA-RISC and IA-64 implementations are the
32x32→32 multiply and variable rotates.

Keying3

Mars keying initializes the first N elements of a fifteen-element array, T[], to the input key k[], where N is the size of the key in
32-bit words. The key is then padded to 15 words by setting T[N]←N and zeroing the remainder of the array. Instead of generating the
entire expanded key directly, Mars generates ¼ of the array, or 10 words, each time, repeating the process four times to develop the entire
key array, K[]. There are three steps in each iteration: linear transform, stirring, and storing. The linear transform applies the formula:

T[i] = T[i] ⊕ ((T[i-7 mod 15] ⊕ T[i-2 mod 15]) <<< 3) ⊕ (4i + R)

to each element of the array, where R is the iteration count (0..3). Stirring uses the following formula:
T[i] = (T[i] + S[T[i-1 mod 15] & 0x1ff]]) <<< 9

applied to each word, repeated four times. Finally, 10 words from the intermediate array are stored in the expanded key array as
follows:

K[10×R + i] = T[4i mod 15]

which effectively stores words 0, 4, 8, 12, 1, 5, 9, 13, 2, and 6, in that order, from the temporary array. After all the expanded key
words are generated, those used in multiplication (K[5], K[7], …, K[35]) are modified if they are weak, i.e., contain long runs of 1’s
or 0’s. The algorithm for identifying weak key words comes from the Mars implementation by Brian Gladman.

PA-RISC
The PA-RISC implementation keeps T[] in registers. The linear transform, the inner stirring loop, and key stores are straight-lined.

In the fix-up phase, the two-ALU PA-RISC has sufficient execution bandwidth to compute the fix-up mask in parallel with looking for
long runs of 1’s or 0’s. If there are no such runs, the remainder of the fix-up is skipped. Using the authors' estimates that statistically 1
out of 41 keys are weak, the extra computation is skipped 97.6% of the time, a performance win even with a branch penalty.

IA-64
The IA-64 Mars keying implementation uses software pipelining to increase keying speed. The routine allocates a 16-register stack

frame, all of which are rotating. The register usage is as follows (indices are modulo 15):
r32 r33 r34 r35 r36 r37 r38 r39 r40 r41 r42 r43 r44 r45 r45 r47

Ti-1 Ti-2 Ti-3 Ti-4 Ti-5 Ti-6 Ti-7 Ti-8 Ti-9 Ti-10 Ti-11 Ti-12 Ti-13 Ti-14 Ti Tx

By assigning Tx ← Ti at the end of the loop, this organization implements a 15-register rotation. The linear transform XORs Ti-2
(r33) and Ti-7 (r38), rotates the result, the XORs with Ti and the iteration constant (4i + R). This would normally require four cycles;
however, the transform can be reorganized into a two-stage, two-cycle pipeline. The first stage computes Ti-2 ⊕ Ti-7 and extracts the high
three bits of the result; the second phase computes Ti ⊕ (4i + R) and completes the rotation, then XORs the final result. The loop uses
rotating predicates to disable the second phase on the first iteration, while the last execution of the second phase is handled after the loop
so that the values return to their initial positions when the loop is complete.

Pipelining the inner stirring loop is limited by the use of T[i-1 mod 15] in computing T[i]; however, the high-order nine bits
extracted for rotation can be used to start the S-Box look-up for the next iteration. This allows a two-stage, four-cycle pipeline, which
executes 33% faster than the 6-cycle, non-pipelined equivalent.

Like PA-RISC, the fix-up mask can be computed in parallel with looking for runs of 1’s and 0’s. Unlike PA-RISC, branches include
‘hints’, so that the branch penalty is only incurred for weak keys, or 2.4% of the time.

Encryption
Mars encryption consists of four phases, each repeated eight times: forward mix, forward keyed transform, backward keyed

transform, and backward mix. The forward and backward mixing uses table look-ups, fixed rotation, XORs, and addition and subtraction
in a rotating pattern, e.g., fmix(A, B, C, D), fmix(B, C, D, A), etc. There are asymmetric additions in steps 1, 2, 4, and 5 of
the forward mix, with corresponding subtractions in steps 2, 3, 5 and 6 of the backward mix.

3 This is the ‘tweaked’ version of the Mars keying. The implementation of the initialization, mixing, and stirring phases of the

original scheme is discussed in Appendix B. The key fix-up is identical for both schemes.

AES Implementations & Performance

5

The core of the keyed transforms is the E function, which takes one data word and uses table look-up, multiplication, variable
rotation, additions and XORs to generate three data words (L, M and R) to add or XOR with the other three data words as follows:

Forward Mode Backward Mode
D[1] += L D[1] ^= R
D[2] += M D[2] += M
D[3] ^= R D[3] += L

On PA-RISC, the mixing phases are coded as straight-line operations. Even with the four table look-ups per step, there is enough
memory bandwidth to load the 16 multiplicative keys into the floating-point unit at the same time. The real bottleneck is the integer
multiply in the E function: the data word must be rotated, stored, loaded into the floating point unit, multiplied, stored again and reloaded
into an integer register. Although an addition and table look-up can be evaluated in parallel, these do not fully amortize the performance
cost of the multiply.

On IA-64, both forward and backward mixing can be coded as a single loop: the asymmetric operations are controlled by loading a
specific bit pattern in the rotating predicates, enabling the appropriate operation at the proper step. Because of perfect branch prediction
with counted loops, this approach executes in the same cycle count as straight-line code.

On IA-64, MMU multiplies are used to compute the E function multiplication. Once the multiplication is complete, the remainder of
the E function can be evaluated. Like the mixing phases, a predetermined bit pattern loaded in the rotating predicates controls whether
the forward or backward mode operations are enabled at each step.

Performance

Cycles Pentium PA-RISC IA-64 IA-64++

Min Average Max

Keying 2128 1797 1804.65 1879 1408 1408

Keying (Original) 3894 1969 1975.89 2060 1903 1313

Encryption 320 540 563.01 584 511 255

Decryption 374 538 552.37 566 527 271

On PA-RISC, Mars keying executes in 1797 cycles, compared to the best-reported Pentium results of 2128, a 15.6% performance
advantage. Encryption and decryption, however, run slower due to the multiplication overhead: 68.8% slower for encryption (540 vs.
320) and 43.9% slower for decryption (538 vs. 374).

On IA-64, keying completes in 1408 cycles, a 33.8% performance gain. Encryption and decryption, with the extra cycles required
for multiplication and variable rotation, are slower than Pentium: 59.7% slower for encryption (511 vs. 320) and 40.9% slower for
decryption (527 vs. 374). Keying on IA-64++ is the same 1408 because the software pipelines hide the extra cycles needed for rotation.
Encryption improves to 255 cycles (20.3% faster than Pentium), and decryption also improves to 271 cycles (27.5% faster).

RC6
The principal programming challenge when implementing RC6 (Rivest, Robshaw, Sidney, Yin) on PA-RISC and IA-64 is the lack

of the fast 32x32→32 multiply and variable rotate primitive the algorithm requires for performance. On the positive side, IA-64’s
rotating integer registers and instruction predication simplify data management and allow for a very compact code size.

Keying
RC6 keying starts with the input key, L[].The key array, S[], is initialized using the two magic numbers P32 = 0xB7E15163 and

Q32 = 0x9E3779B9, as follows:
S[0] = P32
S[1] = P32 + Q32
S[2] = P32 + 2 * Q32
S[3] = P32 + 3 * Q32

. . .

The keying algorithm then performs three mixing passes over the two arrays:
A = S[i] = (S[i] + A + B) <<< 3
B = L[j] = (L[j] + A + B) <<< (A + B)

AES Implementations & Performance

6

where A and B are initially zero, and i and j count circularly through the key and input key arrays, respectively. If the first pass
through the key array is handled separately, it is possible to combine the key array initialization with the first mixing phase. The first mix
can also be partially hard coded, since A = B = 0, and S[0] = P32. Since, after the first loop pass, B is just the previous, modified input
key word, the variable B is replaced with LPREV(k), the user input key L[(k-1) mod 4]. The first pass is coded as follows:

keyVal = P32;
A = T = ROTL(P32, 3);
for (k = 1; k < NKEYS; ++k) {

LPREV(k) = ROTL(LPREV(k) + T, T);
keyVal += Q32;
S[k - 1] = A;
A = ROTL(keyVal + A + LPREV(k), 3);
T = LPREV(k) + A;

}
S[NKEYS - 1] = A;

This organization saves one full load and store of the key array and does not require computing the modulus 2*r + 4, where r is
the number of encryption rounds. The last two passes are identical, with a similar structure to the first pass, but do not, of course, re-
initialize the key array.

For PA-RISC, each instance of the loop can be unrolled four ways, with the input key words reordered circularly each time - this
eliminates loading and storing the keys, and the modulus computation on the input key index.

The IA-64 architecture suggests a different strategy for implementation. The large register file allows the entire key array to be kept
in registers; the rotating integer registers naturally mimic the way data flows through the computation, such that no indexing or modulo
operations are required. The keying routine allocates a 56-register stack frame, all of which are rotating. The rotating registers are
allocated as follows:

r32-r33 r34 r35 r36 r37 r38 r39 r40 r41 r42-r82 r83 r84-r87

Unused LX Ln Ln+1 Ln+2 Ln+3 SX SActive SPrev Key Array SNext Unused

where <Ln … Ln+3> are initialized from the user input key. In order to circulate the keys and key array separately, LX ← Ln+3 and SX
← SNext before the registers are rotated. Each time through the loop, the code operates on Ln, SActive, and SPrev. Rewriting the mixing loop
in these terms:

for (k = 1; k < NKEYS; ++k) {
Ln = ROTL(Ln + T, T);
A = ROTL(SActive + SPrev + Ln, 3);
T = Ln + A;
SActive = A;
LX = Ln+3;
SX = SNext;

}

Predicated instructions enable key array initialization during the first mixing pass and storing the final key words during the final
pass, all within the same code loop and without branching. There are enough unused instruction slots to compute the two qualifying
predicates with no additional cycles. The keying routine is thus coded in a single loop:

for (k = 1; k < 3 * NKEYS; ++k) {
Ln = ROTL(Ln + T, T); if (firstMix) SActive = SPrev + Q32;
firstMix = k < NKEYS-1; lastMix = k >= 2 * NKEYS;
SPrev = A; if (lastMix) *S++ = A;
A = ROTL(SActive + A + Ln, 3);
T = Ln + A;
LX = Ln+3;
SX = SNext;

}
*S = A;

This coding is extremely compact: the entire routine consists of 39 instructions in 16 IA-64 bundles; the core loop is 20 instructions.

Encryption
The RC6 definition is compact and elegant, but the algorithm relies on a fast 32x32→32 multiply and variable rotate for

performance. To multiply on PA-RISC, the two data words must be stored, loaded into the floating point unit, multiplied, stored again
and reloaded into integer registers. The inner loop is unrolled to rotate the data words.

On IA-64, MMU multiplies are used to compute A2. Once the full multiplication is complete, the shladd instruction computes
the final product 2A2 + A ≡ A*(2A + 1). Using rotating registers for the data words, RC6 encryption can be coded in a single loop.

AES Implementations & Performance

7

Performance

Cycles Pentium PA-RISC IA-64 IA-64++

Min Average Max

Keying 1632 1077 1077 1077 1581 1057

Encryption 243 580 590.76 597 490 150

Decryption 226 493 496.37 499 490 130

On PA-RISC, RC6 keying executes in 1077 cycles, compared to the best-reported Pentium results of 1632, a 34% performance
advantage. Encryption and decryption, however, run slower due to the multiplication overhead: 138% slower for encryption (580 vs.
243) and 118% slower for decryption (493 vs. 226).

On IA-64, keying completes in 1581 cycles, a 3.1% performance gain. Encryption and decryption, with the extra cycles required for
multiplication and variable rotation, are slower than Pentium: 101.7% slower for encryption (490 vs. 243) and 116.8% slower for
decryption (490 vs. 226). For IA-64++, keying is estimated to run in 1057 cycles, 54% faster than Pentium, encryption in 150 cycles
(38.3% faster), and decryption in 130 cycles (42.5% faster)

Rijndael
The principles for a fast Rijndael (Daemen, Rijmen) implementation are largely explained in the algorithm specification. A short

comment in section 5.2.2 summarizes the general approach:
“In the table-lookup implementation, all table lookups can in principle be done in parallel. The EXORs can be done
in parallel for the most part also.”

This turns out to be an understatement. In other AES candidates, parallelism must be squeezed from the specification, while
Rijndael’s parallelism cup runneth over. Even the keying phase has considerable parallelism, as will be shown.

Realizing this parallelism requires five 4K tables, as discussed below, although only two tables are used for any one operation. Each
4K table is made up of 4 256x4 byte tables, where each 1K table is rotated one byte position from the previous. The tables and the
operations they’re used in are:

S-Box Keying, Encryption
Implements byte substitution only

I-Box Decryption
Implements inverse byte substitution only

Column Mix Encryption
Main substitution box - combines the byte substitution and column mix operations

Inverse Mix Decryption
Inverse substitution box - combines the byte substitution and inverse column mix operations

Key Mix Keying
Column mix box for computing the inverse key table

These tables are all derived from the basic GF(28) mathematics outlined in the specification. A simple C program is used to generate
all tables and print them as C array declarations to compile and link with the algorithm codes. While 20K bytes of tables may be not
optimal for some target implementations, large memory, large cache machines like PA-RISC and IA-64 gain substantial performance
with what is negligible extra data. Rijndael outperforms all other AES submissions in keying, encryption, and decryption. In particular,
Rijndael keying is a full order of magnitude faster than most other algorithms.

Keying
Rijndael key expansion looks largely serial. There are four look-ups every fourth key word, but little else to suggest parallelism. The

discussion in section 5.3.3, however, shows that decryption can be more efficiently implemented if an “inverse” key table is used. If the
basic key generation loop is unrolled four times, we can combine the inverse key computation with the key generation:

A = SubByte(RotByte(D)) ^ Rcon[i];
B = B ^ A;
C = C ^ B;
D = D ^ C;
IA = InvMixColumn(A);
IB = InvMixColumn(B);
IC = InvMixColumn(C);
ID = InvMixColumn(D);

Clearly, the InvMixColumn operation, which is four byte-indexed lookups into four 256-entry tables and three XORs, can begin
as soon as the key word is ready. Thus, both the forward and inverse key tables can be computed in the same time as computing the
inverse table. As a minor space optimization, the last forward key and first inverse key, which are identical, are stored only once in a
combined key table.

Both the PA-RISC and IA-64 implementations are straightforward: as soon as the forward key is available, start the look-ups for the
inverse key. Two look-ups are performed on the key word A, but only one set of byte extractions is needed, saving four operations per

AES Implementations & Performance

8

round. PA-RISC has 28 registers available to a subroutine: all of these are needed to hold the intermediate results. The large register file
on IA-64 provides enough temporary registers to perform the computation with maximum concurrency. Rijndael keying improves greatly
when everything can be kept in registers.

On PA-RISC, a load address can be the sum of a base register and a scaled offset register; thus, table look-up requires two
instructions. IA-64, however, only takes a load address from a register without offset. Therefore, a table look-up must explicitly scale the
index and add it to the desired table address: this is accomplished with the shladd instruction. The sequence of extract, scale and add,
load is pipelined, so that the entire look-up sequence only requires one extra cycle over the equivalent PA-RISC sequence. The greater
parallelism in IA-64 allows the forward key computation and XOR trees to overlap the look-ups, giving it an overall performance
advantage.

Encryption
Rijndael encryption, while defined as several, separate steps, can be collapsed into a single set of table look-ups by (1) computing

the look-up tables to combine the byte substitution and column mix operations, and (2) selecting the index bytes from the data block to
reflect the row rotation in each round. Decryption is identical except for the look-up table and the order of byte selection. It is not
surprising, then, that encryption and decryption are very similar to keying, except that only 16 look-ups are done per round instead of the
20 performed for each keying round.

Performance

Cycles Pentium PA-RISC IA-64 IA-64++

Min Average Max

Keying 1338 239 249.25 261 148 148

Forward Keying 217 85 92.18 101 104 104

Encryption 284 168 175.5 193 124 124

Decryption 283 168 175.88 192 125 125

On PA-RISC, Rijndael full keying executes in 239 cycles, compared to the best-reported Pentium results of 1338, a 5.6:1
performance advantage. Encryption and decryption are faster: 40.9% faster for encryption (168 vs. 284) and 40.6% faster for decryption
(168 vs. 283). On IA-64, keying completes in 148 cycles, a 9:1 performance improvement over Pentium. Encryption and decryption are
also faster: 56.3% faster for encryption (124 vs. 284) and 55.8% faster for decryption (125 vs. 283).

The parallelism of Rijndael saturates a two-banger IA-64. To explore the limits of Rijndael’s parallelism, a code schedule was
developed for a hypothetical, four-banger implementation. With this 12-way parallel IA-64, the inner loop of Rijndael encryption can be
executed in 7 cycles, which suggests a total encryption time of 74 cycles per 128-bit data block. This is only one cycle short of the
theoretical limit of 6 cycles per round for an arbitrarily wide IA-64 implementation, which would perform 16 extracts, 20 address
computations, 20 loads, then three levels of XORs.

Serpent
The heart of the Serpent algorithm (Anderson, Biham, Knudsen) is the set of Boolean equations implementing the “bit-slice”

substitution boxes. One set of equations was submitted with the AES proposal; Brian Gladman and Sam Simpson used a recursive
expression search program to develop an alternative set of equations that improved performance on the Pentium-II platform. Dr.
Gladman, however, cautions on his Serpent web page4:

“On any particular machine it will be desirable to experiment with the order of terms (where there is quite a lot of
flexibility) and with the reuse of the temporary variables used during function evaluation.”

Taking this advice to heart, the two sets of equations, along with an earlier version of Gladman’s equations, and a set of equations
optimized for Pentium submitted to the authors by Dag Arne Osvik5, were analyzed according to the following metrics:

Ops Count of Boolean operations required to compute the substitution or reverse substitution function. The
equation parser looks for occurrences of A & ~B to take advantage of the and-complement
instruction in both the PA-RISC and IA-64 instruction sets.

Cycles Number of steps required to complete the computation on a highly parallel machine, such as IA-64,
and a two-ALU operation superscalar machine, such as PA-RISC.

Width For IA-64, the largest number of operations executed concurrently.
Temps Number of temporary values. In order to reduce the number of temporaries, a simple register analysis

was performed that first re-used the output terms as intermediate results, then assigned temporaries as
needed by the computation.

The results of this analysis for IA-64, summarized in Table 1 below, are interesting: even though the Gladman equations
consistently have fewer operations than the others, only 4 of the 16 sets compute faster. When the equations are analyzed for two-ALU

4 The expression search program, Boolean equations and reference implementations are available at
http://www.btinternet/~brian.gladman/cryptography_technology/Serpent

5 Dag Arne Osvik osvik@ii.uib.no

AES Implementations & Performance

9

operation on PA-RISC, the results (Table 2) favor Gladman’s equations, but four of Osvik’s equations compute faster. A follow-up
submission from Mr. Osvik for S-Box 3 resulted in a spectacular, 4-cycle, solution for IA-64, even though it has the highest operation
count of any equation.

The conclusion here is that there is no optimal set of bit-slice equations for all Serpent implementations: the capability and
constraints of the target machine must be carefully considered. The authors invite others to submit their own equations for analysis, and
offer the analysis tools used here to the Serpent team for their own use.

Keying
Serpent keying starts with the input key, padded to 256 bits, and generates 132 4-byte values with the recurrence:

Wi = (Wi-8 ⊕ Wi-5 ⊕ Wi-3 ⊕ Wi-1 ⊕ Φ ⊕ i) <<< 11
where W-8 = input key word 0, W-7 = input key word 1, etc., and Φ is 0x9e3779b9, derived from the Golden ratio. The resulting

values, [W0 … W131], are then processed in groups of four, <Wn, Wn+1, Wn+2, Wn+3>, applying the Serpent forward substitution boxes in
the order S3, S2, S1, S0, S7, …, S4, S3. This generates the 33 128-bit keys required for encryption.

Inspecting the recurrence, there is an active state of eight words and that Wi replaces Wi-8 at each step. If we label the initial key
words W-8 = A, W-7 = B, … W-1 = H, we can rewrite the recurrence as the following pattern:

A’ = (A ⊕ D ⊕ F ⊕ H ⊕ Φ ⊕ 0) <<< 11
B’ = (B ⊕ E ⊕ G ⊕ A’ ⊕ Φ ⊕ 1) <<< 11
C’ = (C ⊕ F ⊕ H ⊕ B’ ⊕ Φ ⊕ 2) <<< 11
D’ = (D ⊕ G ⊕ A’ ⊕ C’ ⊕ Φ ⊕ 3) <<< 11
E’ = (E ⊕ H ⊕ B’ ⊕ D’ ⊕ Φ ⊕ 5) <<< 11
F’ = (F ⊕ A’ ⊕ C’ ⊕ E’ ⊕ Φ ⊕ 6) <<< 11
G’ = (G ⊕ B’ ⊕ D’ ⊕ F’ ⊕ Φ ⊕ 7) <<< 11
H’ = (H ⊕ C’ ⊕ E’ ⊕ G’ ⊕ Φ ⊕ 8) <<< 11

. . .
A’ = (A ⊕ D ⊕ F ⊕ H ⊕ Φ ⊕ 128) <<< 11
B’ = (B ⊕ E ⊕ G ⊕ A’ ⊕ Φ ⊕ 129) <<< 11
C’ = (C ⊕ F ⊕ H ⊕ B’ ⊕ Φ ⊕ 130) <<< 11
D’ = (D ⊕ G ⊕ A’ ⊕ C’ ⊕ Φ ⊕ 131) <<< 11

This formulation has some limited parallelism in the XOR trees. Eventually, the equations will serialize on the 11-bit rotation, but
the overall sequence can be organized on a parallel machine to minimize the performance effect. Intermediate loads and stores can be
eliminated by overlapping the S-box lookup for <Wn, Wn+1, Wn+2, Wn+3> with the computation of <Wn+4, Wn+5, Wn+6, Wn+7>. Because
different S-boxes are used at each step, the highest performance for Serpent keying is realized by a straight-line implementation.

On PA-RISC, limited to two-way integer instruction parallelism, each set of four recurrence computations saturates the processor
for 11 cycles (22 operations). The 11-bit rotation is implemented with a single instruction (shrpw); common subexpressions (e.g., F ⊕
H) remove two of the 24 operations (five XORs and one rotate per step, times four steps). Since PA-RISC does not have an immediate
XOR operation, the (Φ ⊕ i) term is computed by adding the low 11 bits of the value (constant for each step) to the high 21 bits
(constant for all steps); thus, the computation still occurs in one cycle. To avoid errors, the 11-bit values are generated by a simple
program.

IA-64 rotation requires two instructions (deposit and shift register pair). This increases the cycle count for computing four steps
from 11 on PA-RISC to 14. However, the machine’s greater parallelism can be employed to overlap S-Box and recurrence logic as
follows:

Recurrence(W0, W1, W2, W3)
Recurrence(W4, W5, W6, W7) Sbox3(W0, W1, W2, W3)
Recurrence(W8, W9, W10, W11) Sbox2(W4, W5, W6, W7)
Recurrence(W12, W13, W14, W15) Sbox1(W8, W9, W10, W11)

.
Recurrence(W124, W125, W126, W127) Sbox5(W120, W121, W122, W123)
Recurrence(W128, W129, W130, W131) Sbox4(W124, W125, W126, W127)

Sbox3(W128, W129, W130, W131)

Each step in this parallel evaluation, including storing the key words, executes in the 14 cycles needed for the recurrence alone,
yielding a substantial speed-up for Serpent keying.

Encryption
Serpent encryption and decryption use 32 rounds of key exclusive OR’s, substitution box logic and linear transforms. The S-box

issues are almost identical to those for keying, as discussed above. The linear transform, which accelerates the avalanche effect, limits the
potential for overlap with the S-box computations. Depending on the S-box equations used, at most one or two cycles can be removed
per S-box; the current implementation overlaps one cycle for six of the eight S-box equations.

AES Implementations & Performance

10

The forward linear transform, diagrammed in Figure 1, consists of 16 operations (six fixed rotations, two rotations, eight exclusive-
OR’s). Ideally, this sequence can be executed in seven cycles on a parallel machine:

X0 = X0 <<< 13 X2 = X2 <<< 3
X1 = X1 ⊕ X0 X3 = X3 ⊕ X2 T1 = X0 << 3
X1 = X1 ⊕ X2 X3 = X3 ⊕ T1
X1 = X1 <<< 1 X3 = X3 <<< 7
X0 = X0 ⊕ X3 X2 = X2 ⊕ X3 T2 = X1 << 7
X0 = X0 ⊕ X1 X2 = X2 ⊕ T2
X0 = X0 <<< 5 X2 = X2 <<< 22

The inverse linear transform, diagrammed in Figure 2, also has 16 operations; however, it can be computed in five cycles:
X0 = X0 >>> 5 X2 = X2 >>> 22 T1 = X1 ⊕ X3 T2 = X3 >>> 7
X0 = X0 ⊕ T1 X2 = X2 ⊕ X3 T3 = X1 << 7 X1 = X1 >>> 1
X1 = X1 ⊕ X0 X2 = X2 ⊕ T3 T4 = X0 << 3
X1 = X1 ⊕ X2 X3 = X3 ⊕ X2 X0 = X0 >>> 13
X3 = X3 ⊕ T4 X2 = X2 >>> 3

On PA-RISC, the single-cycle fixed rotation allows both transforms to execute in eight cycles, optimal for the two-way superscalar
machine. The two-cycle rotation on IA-64 increases the operation count to 22, and the dependencies are such that the best
implementation for the transforms requires 12 cycles. Loading and XORing the key material in parallel with the transforms can reclaim
some performance; however, the linear transformation accounts for over 50% of the encryption and decryption cycles.

As with keying, the best performance is achieved with straight-line code. The program source for both PA-RISC and IA-64 make
heavy use of macros and bear strong resemblance to the algorithm specification. An extension of the software tools used to analyze
Serpent equations actually produces the raw instruction stream for each equation, in either machine language format, which is then easily
integrated into the source program through the macro definitions.

Performance

Cycles Pentium PA-RISC IA-64 IA-64++

Min Average Max

Keying 1292 668 668.79 669 475 380

Encryption 900 580 580 580 565 468

Decryption 885 585 586.62 587 631 407

On PA-RISC, Serpent keying executes in 668 cycles, compared to the best-reported Pentium results of 1292, almost a 2:1
performance advantage. Encryption and decryption also run substantially faster: a 35.6% advantage for encryption (580 vs. 900) and a
33.9% advantage for decryption (585 vs. 885).

On IA-64, the extra parallelism pays off handsomely in keying, where the routine completes in 475 cycles, a 2.7:1 performance gain
over Pentium. Encryption and decryption, with the extra cycles required to complete the linear transform, are better than Pentium,
although not as overwhelmingly: 37.2% for encryption (565 vs. 900), 28.7% for decryption (631 vs. 885). For IA-64++, keying is
estimated to run in 380 cycles, 3.4 times faster than Pentium, encryption in 468 cycles (48.0% faster), and decryption in 407 cycles (54%
faster).

>>> 5 >>> 22

<< 3

>>> 1

<< 7

>>> 3

>>>7

>>> 13

Figure 2 – Serpent Inverse Transform

<<< 13 <<< 3

<< 3

<<< 1

<< 7

<<< 22

<<< 7

<<< 5

Figure 1 – Serpent Linear Transform

AES Implementations & Performance

11

AES Submission Gladman (Best) Osvik

Ops Cycles Width Tmps Ops Cycles Width Tmps Ops Cycles Width Tmps
S Box 0 18 9 6 4 15 6 4 3 17 6 4 5
S Box 1 18 9 5 3 14 8 3 2 17 7 3 3
S Box 2 16 9 3 4 16 8 3 3 14 7 3 5
S Box 3 18 7 5 4 16 8 5 3 21 4 6 6
S Box 4 19 7 4 5 15 8 3 3 19 9 3 3
S Box 5 17 8 3 4 16 7 4 3 18 7 3 3
S Box 6 19 6 7 4 17 6 5 4 17 9 3 3
S Box 7 19 8 4 3 17 11 3 3 19 8 4 5

I Box 0 19 8 5 4 15 10 2 2 18 8 3 4
I Box 1 18 9 3 3 17 7 5 2 18 11 3 3
I Box 2 18 7 5 4 16 8 4 3 18 7 3 3
I Box 3 17 7 4 3 17 9 4 4 17 8 3 3
I Box 4 17 7 4 4 17 6 5 5 19 11 3 3
I Box 5 17 7 5 4 16 7 4 3 18 10 2 3
I Box 6 19 6 4 4 17 8 4 2 16 8 3 3
I Box 7 18 9 4 2 17 9 3 2 18 8 4 4

Table 1 - Serpent IA-64 Metrics

AES Submission Gladman (Best) Osvik

Ops Cycles Tmps Ops Cycles Tmps Ops Cycles Tmps

S Box 0 18 11 3 15 8 2 17 9 2
S Box 1 18 11 3 14 8 2 17 9 3
S Box 2 16 11 4 16 9 3 14 8 3
S Box 3 18 9 4 16 9 3 17 9 3
S Box 4 19 10 6 15 8 3 19 10 1
S Box 5 17 9 4 16 9 3 18 9 1
S Box 6 19 10 4 15 9 3 17 10 2
S Box 7 19 10 3 17 12 5 19 10 2

I Box 0 19 10 4 15 10 2 18 11 2
I Box 1 18 10 3 17 9 3 18 11 2
I Box 2 18 10 3 16 9 2 18 10 2
I Box 3 17 9 3 17 9 4 17 9 1
I Box 4 17 9 5 17 9 4 19 11 2
I Box 5 17 9 4 16 8 4 18 10 2
I Box 6 19 10 5 17 9 3 16 8 2
I Box 7 18 9 3 17 10 2 18 9 2

Table 2 - Serpent PA-RISC Metrics

AES Implementations & Performance

12

Twofish
The Twofish block cipher employs a “Feistel-like structure with additional whitening of the input and output.”6 The 128-bit

plaintext block is split into four 32-bit words. In the input whitening step each 32-bit word is XORed with a different 32-bit input-
whitening key. This is followed by 16 rounds in which the left two words are transformed by the F-function. The leftmost word
produced by the F-function is XORed with the third word, and the result is rotated to the right by one bit. The rightmost word produced
by the F-function is XORed with the fourth word, which previously had been rotated to the left by one bit. For all but the 16th round, the
left and right pairs of words then are swapped for the next round. Each of the final four words is XORed with a different 32-bit output-
whitening key.

Within the F-function, the first input word is transformed by the g-function. The second input word first is rotated to the left by
eight bits, and then transformed by the g-function. The two g-function outputs then are mixed into two new words by a Pseudo-
Hadamard Transform (PHT). After mixing, a different round key is added to each of the two new words, producing the two output words
of the F-function.

The g-function may be implemented in a variety of ways, depending upon one's choice of keying strategy. Twofish defines five
different keying strategies: Compiled, Full, Partial, Minimum, and Zero. These choices enable a wide range of time/memory trade-offs
for a Twofish implementation.

For RISC and EPIC microprocessors, the choice of Full keying is the most natural. Full keying requires 4096+128+32 = 4256 bytes
of table for the four key-dependent S-boxes, 32 round keys, and eight whitening keys. This table size poses no problem for a modern
computer platform. Compiled keying is able to reduce the Twofish Pentium-Pro encryption time from 315 cycles to 258 cycles, but it
necessitates a separate copy of the encryption and decryption codes for each different key. For superscalar RISC and EPIC
microprocessors, Compiled keying is unlikely to result in a performance gain. Given sufficiently many general registers, key loading
always can be overlapped and executed in parallel.

The heart of the Twofish g-function is defined as:
1. Partition the 32-bit input word into four 8-bit bytes.
2. Use the value of each of the four bytes to index and fetch a new byte value from a corresponding, 256 byte, key-

dependent S-box.
3. Matrix multiply the MDS matrix, a predefined, maximal distance separation byte matrix by the vector of the four

bytes fetched from the S-boxes. Scalar multiply of bytes in GF(28) is represented as GF(2)[x] modulo v(x), where
v(x) is the primitive polynomial x8+x6+x5+x3+1. Scalar addition of bytes in GF(28) is XOR.

For Full keying, each of the four S-boxes contains 256 32-bit words, rather than 256 8-bit bytes. Each 32-bit word of S-box32[i] is
the four-byte vector computed by matrix multiplication of the MDS matrix by the four-byte vector whose sole non-zero component is the
byte S-box8[i]. If we denote matrix multiplication by +.×, and the bytes of a column vector, least significant byte first, as [B0:B3] or [B0,
B1, B2, B3] the 32-bit S-boxes are:

S-box032[i] = MDS +.× [S-box08[i], 0, 0, 0]
S-box132[i] = MDS +.× [0, S-box18[i], 0, 0]
S-box232[i] = MDS +.× [0, 0, S-box28[i], 0]
S-box332[i] = MDS +.× [0, 0, 0, S-box38[i]]

In this manner, all GF(28) byte multiplications of the g-function MDS matrix multiply are pre-computed, and saved in the 32-bit
S-boxes. With these S-boxes, all that is required for a g-function MDS matrix multiplication is to fetch a 32-bit word from each of the
four S-boxes and XOR the words together. Therefore, the Full keying computation of the g-function consists of extracting four 8-bit
bytes from the input word, using each extracted byte to index and fetch a 32-bit word from a corresponding S-box, and XORing the four
fetched words. The rotation by eight bits of the right input word to the F-function actually requires no explicit computation. It is
accomplished simply by the order in which 8-bit bytes are extracted from the input word. Similarly, no computation is required for word
swapping between rounds.

Keying
Full keying for a Twofish 128-bit user-supplied key proceeds in three phases. In each phase the approach taken utilizes modestly

sized tables to accelerate the performance. The user-supplied key is taken as four 32-bit words, in little-endian byte order. These words
are called M0, M1, M2, and M3. Their byte contents, respectively are: [m0:m3], [m4:m7], [m8:m11], and [m12:m15], where mi is the i'th
byte of the user-supplied key.

In the first phase of keying, two four-byte vectors denoted S0 and S1 are derived from the user-supplied key. These vectors are
utilized in the computation of the S-boxes. S0 and S1 each are computed by a matrix multiplication of the RS matrix by an eight-byte
vector of user-supplied key bytes. The 4×8 RS matrix is derived from a Reed-Solomon code, and is specified by the Twofish definition.
Specifically:

S0 = [RS] +.× [m0:m7] S1= [RS] +.× [m8:m15]

For the RS matrix multiplication, scalar multiply of bytes in GF(28) is represented as GF(2)[x] modulo w(x), where w(x) is the
primitive polynomial x8+x6+x3+x2+1. Scalar addition of bytes in GF(28) is XOR. The actual computation of these two matrix
multiplications is accomplished by simulating the LFSRs for the RS code. Doug Whiting programmed this in the following manner in
the original Twofish submission.

6 Schneier, Kelsey, Whiting, Wagner, Hall, Ferguson, The Twofish Encryption Algorithm, John Wiley & Sons, 1999.

AES Implementations & Performance

13

#define RS_GF_FDBK 0x14D /* field generator */
#define RS_rem(x) \
{ BYTE b = x >> 24; \

DWORD g2 = ((b << 1) ^ ((b & 0x80) ? RS_GF_FDBK : 0)) & 0xFF; \
DWORD g3 = ((b >> 1) & 0x7F) ^ ((b & 1) ? RS_GF_FDBK>>1 : 0) ^ g2; \

x = (x << 8) ^ (g3 << 24) ^ (g2 << 16) ^ (g3 << 8) ^ b;
}

S0 and S1 then can be calculated by the following triply-nested loop, where M[i] denotes Mi and S[i] denotes Si:
for(i = 0; i < 2; ++i) {

for(j = 0, r=0; j < 2; ++j) {
r ^= (j) ? M[i*2] : M[i*2+1];
for(k = 0; k < 4; ++k) {

RS_rem(r);
}
S[i] = r;

}
}

The calculation of S0 and S1 can be accelerated by using a pre-computing a table of 32-bit words, RStbl[256], where
RStbl[i] = RS_prem(i). RS_prem(x) is identical to RS_rem(x) but without the (x << 8) term in the final assignment
statement. Each cycle of the LFSRs then may be simulated simply by:

unsigned int x;
#define RS_rem(x) x = (x << 8) ^ RStbl[x >> 24];

The triply-nested loop to compute S0 and S1 is completely unrolled. Housekeeping instructions may be executed in parallel with this
computation.

The second phase of keying is to compute the four key-dependent S-boxes. Four pre-computed, 256 entry, 32-bit word auxiliary
tables are utilized to accelerate this computation. These tables, denoted MD0, MD1, MD2, and MD3, are similar to the Full key S-boxes.
Two additional 256 entry, 8-bit tables are required for the S-box computation. These are the tables containing the basic q0 and q1 byte
permutations defined in the Twofish specification. These tables are denoted q0 and q1. Each auxiliary table entry combines the final
q0 or q1 byte permutation of the S-box computation, and the MDS matrix multiplication. Specifically :

MD0[i] = MDS +.× [q1[i], 0, 0, 0]
MD1[i] = MDS +.× [0, q0[i], 0, 0]
MD2[i] = MDS +.× [0, 0, q1[i], 0]
MD3[i] = MDS +.× [0, 0, 0, q0[i]]

This is the same matrix multiplication used in the g-function. Each Full key S-box contains exactly the same 32-bit words as the
corresponding auxiliary table, but permuted according to the user-supplied key. If we designate the bytes of the words S0 and S1 as
S0(3:0) and S1(3:0), byte zero being least significant, the Full key S-box computation loop is:

for(i = 0; i < 256; ++i) {
S-box032[i] = MD0[q0[q0[i]^S0(0)] ^ S1(0)];
S-box132[1] = MD1[q0[q1[i]^S0(1)] ^ S1(1)];
S-box232[i] = MD2[q1[q0[i]^S0(2)] ^ S1(2)];
S-box332[i] = MD3[q1[q1[i]^S0(3)] ^ S1(3)];

}

This computation further can be accelerated by yet another, 256-entry, auxiliary 32-bit word table. This table is called q0q1q0q1.
The i'th entry of this table consists of [q0[i], q1[i], q0[i], q1[i]]. The word q0q1q0q1[i] can be fetched by a single
instruction, and can be XORed with S0. This computes the inner XOR of all four assignment statements in parallel. Each byte of this
intermediate result then is used to fetch a byte from q0 or q1. Following one more XOR with the corresponding byte of S1, the S-box32
entry is obtained by indexing and fetching the 32-bit word from the proper MD table. This word is stored into the proper 32-bit S-box.

The code to perform this computation is organized as a 256-pass loop for both PA-RISC and IA-64. The S0 and S1 words already
reside in general registers. For each loop iteration, the required operations are one indexed load for the q0q1q0q1 table entry, a word
XOR with S0, four byte extracts7, four indexed byte loads from the q0 and q1 tables, four XORs with S1 bytes, four indexed word loads
from the MD tables, four indexed word stores to the S-boxes, and a loop closing instruction. For IA-64, eight additional instructions are
required for computing table addresses. IA-64 post address modification is used for indexing the q0q1q0q1 table and the S-boxes.

The total number of 256-entry tables used to accelerate the computation of S0, S1, and the key-dependent S-boxes is eight,
occupying 6656 bytes. These table sizes are quite acceptable for a modern RISC or EPIC platform. No IA-64 bank optimization was
done for these tables8. No additional tables are required for the third phase of keying.

1. q0 256 bytes
2. q1 256 bytes
3. q0q1q0q1 1024 bytes
4. MD0, …, MD3 1024 bytes each, 4096 bytes total
5. RStbl 1024 bytes

7 The four S1 byte extracts are done outside the loop.
8 Described in the next section.

AES Implementations & Performance

14

The third and final phase of keying is the computation of the 40 whitening and round keys. This code is similar to the computation
of the S-boxes. It is organized as a 20-iteration loop, in which two keys are computed per iteration. Unlike the S-box computation, each
key requires a full MDS matrix multiply. Further, a final PHT transform is applied to each pair of keys. The Twofish definition
systematically uses the same MDS matrix multiply and PHT operations in the keying algorithms and in the encryption and decryption
algorithms.

The same table techniques used above are used to accelerate computation of the whitening and round keys. The initial eight of the
40 keys are taken as the input and output whitening keys. The final 32 keys are taken as the round keys. Using the previously defined
notations, and K to denote the newly computed keys, the computation for the 40 whitening and round keys is:

for(i = 0; i < 40; i += 2) {
T0 = MD0[q0[q0[i]^M2(0)] ^ M0(0)];
T0 ^= MD1[q0[q1[i]^M2(1)] ^ M0(1)];
T0 ^= MD2[q1[q0[i]^M2(2)] ^ M0(2)];
T0 ^= MD3[q1[q1[i]^M2(3)] ^ M0(3)];
T1 = MD0[q0[q0[i+1]^M3(0)] ^ M1(0)];
T1 ^= MD1[q0[q1[i+1]^M3(1)] ^ M1(1)];
T1 ^= MD2[q1[q0[i+1]^M3(2)] ^ M1(2)];
T1 ^= MD3[q1[q1[i+1]^M3(3)] ^ M1(3)];
T1 = (T1 <<< 8);
T0 += T1;
T1 += T0;
T1 = (T1 <<< 9);
K[i] = T0;
K[i+1] = T1;

}

The code to perform this computation is organized as a 20-pass loop for both PA-RISC and IA-64. Note that the Mi words are used
in even-subscript and odd-subscript pairs. Also note that the Mi words are used in an order reversed from the order of the Si words in the
S-box computation. The M0, M1, M2, and M3 words already reside in general registers. For each loop iteration, the required operations
are two indexed loads for the q0q1q0q1 table entries, two word XORs with M2 and M3, eight byte extracts9, eight indexed byte loads
from the q0 and q1 tables, eight XORs with M0 and M2 bytes, eight indexed word loads from the MD tables, six XORs to complete the
MDS matrix multiplies, two rotates, one add and one shift-and-add for the PHT, two indexed word stores to the key array, and a loop
closing instruction. For IA-64, sixteen additional instructions are required for computing table addresses. IA-64 post address
modification is used for indexing the q0q1q0q1 table and the key array.

Encryption
For PA-RISC the encryption and decryption functions are organized as straight-line code. Each is provided two pointer arguments,

the first to the 16-byte cleartext block or ciphertext block, the second to the concatenation of the round keys, whitening keys, and four
Full key S-boxes. Input blocks are whitened 64-bits at a time. Housekeeping instructions are overlapped with the first and last rounds.

Each PA-RISC round, including the one-bit circular shifts, executes in about a dozen cycles. PA-RISC includes an instruction that
can extract any contiguous 8-bit field from a word in one cycle. The extracted byte can be used directly as an index for a 32-bit word
load instruction. Further, the PA-RISC shift-and-add instruction permits the PHT to be done in two instructions during the same cycle.
Thus, each round needs 32 instructions: eight extract instructions (extrw,u), eight instructions to load from S-boxes (ldw,s), two
instructions to load round keys (ldw), two one-bit circular shift instructions (shrpw), eight XOR instructions (xor), three add
instructions (add,l), and one shift-and-add instruction (shladd,l). The instruction schedule is nearly optimal, but the final right
rotate by one bit adds one cycle to the round.

For IA-64 the encryption and decryption functions are organized in exactly the same way. In each round, an additional instruction
is required to compute an S-box address from each extracted byte. Although this requires eight additional instructions, there also is an
added benefit. Microprocessor caches often are organized as independent 8-byte banks. An optimal memory strategy, therefore, shuffles
the four S-boxes, so that each S-box is entirely contained in a single cache bank. This results in a 16-byte stride between successive
S-box words. The IA-64 shift-and-add instructions, used to compute S-box addresses, therefore, use a shift value of four. This assures
the absence of cache bank conflicts when executing two S-box loads during the same cycle.

A second technique employed for IA-64 is computational height reduction, a practice common for parallel instruction issue
machines. Additional instructions are executed, but the entire computation completes in fewer cycles.

In Twofish, the rightmost bit of the first F-function output becomes the high order bit of a byte to be extracted in the next round.
For PA-RISC, the fact that the extract instruction demands a contiguous bit field requires that the one-bit right rotate be done after
computation of the first F-function output and prior to the extract for the next round. For IA-64, parallelism and predicates offer a better
solution.

The first F-function output is computed as three XORs, two adds, and a final XOR. Although these operations do not commute or
freely associate, they in fact do so for the rightmost bit, which actually is the result of six XORs. By computing the rightmost bit of the
last XOR sooner (round-key XOR third-block-word), one redundantly can compute the rightmost bit of the first F-function output one
cycle earlier. This permits the rightmost bit also to be tested without adding a cycle to the round. The result of the test is written to a
predicate. This predicate then is used to set a temporary S-box pointer either to the beginning, or to the halfway point, of the
corresponding S-box at the start of the next round. Only the seven leftmost bits of the unrotated first F-function output are extracted in

9 The eight M0 and M1 byte extracts are done outside the loop.

AES Implementations & Performance

15

the next round. They then are used as an index relative to the temporary pointer. The full first F-function output word can be rotated
later.

It also turns out that, with proper table alignment, height reduction can be used to compute two S-box addresses one cycle earlier in
the next round. The enabling fact here is that offsets into S-boxes consist of 12 bits, of which the right four are zero. For a 4096-byte
aligned and shuffled table, an XOR can be used for the address calculation. The terms for two such XORs redundantly can be computed
in the previous round. This can be seen from the following equations for one pair of encryption terms (note: [7:0] denotes the rightmost
8 bits of a word):

Let: PHT1be the second PHT output for the current Round.
RK1 be the second Key word for the current Round.
BW3 be the fourth Block word for the current Round.
Fin1 be the second input word to the next Round.
PSB1 be the pointer to S-box 1.
pSBE be the pointer to the S-box 1 entry for Fin1[7:0].10

Fin1 = (PHT1+RK1) ⊕ BW3

pSBE = pSB1 + 16*(Fin1)[7:0]
= pSB1 + 16*((PHT1+RK1) ⊕ BW3)[7:0]
= pSB1 + (16*(PHT1+RK1)[7:0] ⊕ 16*BW3[7:0])
= pSB1 ⊕ (16*(PHT1+RK1)[7:0] ⊕ 16*BW3[7:0]) 11

= (pSB1 ⊕ 16*BW3[7:0]) ⊕ (16*(PHT1+RK1)[7:0])

Performance

Cycles Pentium PA-RISC IA-64 IA-64++

Min Average Max

Keying 8414 2846 2901.79 2964 2445 2445

Encryption 315 205 217.45 233 182 182

Decryption 311 200 210.29 224 182 182

On PA-RISC, Twofish keying executes in 2846 cycles, compared to the best-reported Pentium results of 8414, a 2.96:1 performance
advantage. Encryption and decryption also run faster: a 36% advantage for encryption (205 vs. 315) and a 35.7% advantage for
decryption (200 vs. 311).

On IA-64, Twofish executes even faster. Twofish keying executes in 2445 cycles, compared to the best-reported Pentium results of
8414, a 3.44:1 performance advantage. Encryption and decryption also run faster: a 42.2% advantage for encryption (182 vs. 315) and a
41.5% advantage for decryption (182 vs. 311).

10 S-box 1 is used for the rightmost bits because of the logical (Fin1 <<< 8).
11 Addition is equivalent to exclusive-or because of the S-box table alignment.

AES Implementations & Performance

16

Conclusions
All the algorithms have reasonable implementations on PA-RISC and IA-64; all make good use of the architectures. It is clear that

the underlying computer architecture has a direct and significant effect on the optimal implementation for each candidate. The large
register files in PA-RISC and IA-64 enable complete state to be kept without using memory, influencing the structure of Rijndael,
Twofish, and keying codes. The choice of equations for Serpent is a direct result of the available execution width and ALU operations.
Sometimes, effects are expressible only at the assembly level, such as the software pipelines in the Mars keying or the MMU
multiplication in RC6 encryption. In other cases, algorithm structures to exploit the underlying architecture are best expressed in high
level source, such as the restructuring of the RC6 keying algorithm.

Our second conclusion is that algorithm performance cannot be measured by a single number. A complete performance
characterization must filter out large system effects such as caching, memory latencies, interrupts, paging, process swaps, and I/O
activity, but should draw attention to fine-grain system effects such as cache interference and execution latencies. When timing keying
for random input key values, the results will exhibit a performance distribution rather than a single number.

Another consideration is parallelism. Future CPU’s will be increasingly, and we believe explicitly, parallel; algorithms that can
exploit parallelism will see continuing performance improvement over the life of the new AES algorithm. It should be observed that as
better Serpent equations are developed, Serpent will further improve both its performance and parallelism. A final factor in evaluating
software is memory usage; none of the finalists use tables uncomfortably large for modern server and desktop systems.

Using these criteria, and assuming that the IA-64++ additions will/will-not be made, the results of this study rank the AES finalists
as follows:

Performance Memory Parallelism
Rijndael RC6 Rijndael

RC6/Twofish Serpent Twofish

Twofish/RC6 Mars Serpent

Mars Twofish Mars

Serpent Rijndael RC6

Acknowledgments
We wish to express our thanks to Doug Whiting for his unerring guidance, especially his prescient counsel in the selection of first-

round candidates to investigate. We also wish to thank and to acknowledge the contributions of Dr. Brian Gladman, whose work is well
known and appreciated by the AES community. Brian's codes were used to generate test values and, in many instances, improved our
understanding of the algorithms. Brian also kept us up to date on his Pentium performance improvements. We appreciate Rohit Bhatia's
suggestions for 32×32 multiplies. Dag Arne Osvik contributed his Serpent equations, which forced our equation analysis tools to
improve and sped up both the PA-RISC and the IA-64 Serpent implementations.

We are indebted to John Crawford and members of the Intel Itanium team, who provided access and support for the Itanium
simulator. Finally, our thanks go to the Hewlett Packard Ft. Collins McKinley team, whose assistance with the development and
simulation tools, and patience with our endless questions, was the sine qua non of the IA-64 work.

AES Implementations & Performance

17

Appendix A:
Summary of Best Performance

Candidate Encryption Decryption Keying

Clocks Ops IPC Regs Bytes Clocks Ops IPC Regs Bytes Clocks Ops IPC Regs Bytes
Mars
 Pentium 320 374 3894
 New Keying 2128
 PA-RISC 540 631 1.17 12(18) 2588 538 632 1.17 12(18) 2592 1969 2908 1.48 20 2584

New Keying 538 631 1.17 12(18) 2588 537 632 1.17 12(18) 2592 1797 1805 1.00 20 1984
 IA-64 511 1013 1.98 18//8 784 527 1013 1.92 18//8 784 1903 3332 1.75 14//48 1344

New Keying 1408 3132 2.22 12//16 976
 IA-64++ 255 271 1313
 New Keying 1408
 Table Sizes 2048 2208 2208
 Alg Parallelism 2.0 2.0 3.0
RC6
 Pentium 243 226 1632
 PA-RISC 580 577 0.99 12(4) 2308 493 558 1.13 12(4) 2232 1077 1519 1.41 12 760
 IA-64 490 826 1.69 4/27/8 480 490 826 1.69 4/27/8 528 1581 2629 1.66 8//56 256
 IA-64++ 150 130 1057
 Table Sizes 0 176 176
 Alg Parallelism 2.0 2.0 2.0
Rijndael
 Pentium 284 283 1338
 PA-RISC 168 537 3.20 24 2160 168 539 3.21 24 2160 239 686 2.87 28 2800

Fwd Keying 85 228 2.68 19 1504
 IA-64 125 704 5.63 20/12 3808 126 706 5.60 20/12 3824 148 822 5.55 24/21 4480

Fwd Keying 104 282 2.71 19 1504
 IA-64++ same same same
 Table Sizes 8192 8368 8368
 Alg Parallelism 10.0 10.0 10.0
Serpent
 Pentium 900 885 1301
 PA-RISC 580 1273 2.19 17 5100 585 1309 2.24 17 5240 668 1409 2.11 19 5640
 IA-64 565 1517 2.61 24 8480 631 1546 2.45 24 8848 475 1527 3.21 22/4 8368
 IA-64++ 468 407 380
 Table Sizes 0 528 528
 Alg Parallelism 3.0 3.0 4.0
Twofish
 Pentium 315 311 8414
 PA-RISC 205 548 2.67 20 2192 200 548 2.74 20 2192 2846 8904 3.13 30 1324
 IA-64 182 927 5.09 23 5184 182 915 5.03 23 4960 2445 9561 3.91 26/21 1600
 IA-64++ same same same
 Table Sizes 6656 4256 4256
 Alg Parallelism 6.0 6.0 4.0

Notes: -- IA64++ is a hypothetical IA-64 implementation – refer to the text for details. It does not represent any current
or planned IA-64 implementation.

-- Twofish times for Full keying are from: The Twofish Encryption Algorithm, John Wiley & Sons, 1999.
-- Pentium, Alpha clocks are lowest reported clocks from the NIST Round 1 Report, August 1999.
-- Regs = GRs, or statics/stacked, or statics//rotating, or statics/stacked/rotating, or GRs(FRs) registers.
-- Bytes are object code sizes. Table Sizes are total tables for keying, key table plus look-up tables for

encryption and decryption.
-- Alg Parallelism is an estimated integral upper bound for software parallelism.

AES Implementations & Performance

18

Appendix B: Mars Keying
Original Implementation

The original Mars keying initializes the first seven elements of an array, T[-7..39], to the first seven entries of the Mars S-box,
then sets the rest of the array as follows:

T[i] = ((T[i-7] ⊕ T[i-2]) <<< 3) ⊕ k[i mod N] ⊕ i i = 1 ... 38
T[39] = N

where k is the input key and N is the size, in words, of the input key. This recurrence has an active state of seven words, A, B, …, G,
such that the expansion can be rewritten:

T[0] = A = ((A ⊕ F) <<< 3) ⊕ k[0] ⊕ 0
T[1] = B = ((B ⊕ G) <<< 3) ⊕ k[1] ⊕ 1
T[2] = C = ((C ⊕ A) <<< 3) ⊕ k[2] ⊕ 2
T[3] = D = ((D ⊕ B) <<< 3) ⊕ k[3] ⊕ 3
T[4] = E = ((E ⊕ C) <<< 3) ⊕ k[0] ⊕ 4

. . .
T[38] = D = ((D ⊕ B) <<< 3) ⊕ k[2] ⊕ 38
T[39] = N

where A is initialized to S[0], B to S[1], and so forth. When key expansion is complete, the data words are then “stirred” seven
times as follows:

T[i] = (T[i] + S[T[i-1] & 0x1ff]]) <<< 9 i = 1 ... 39
T[0] = (T[0] + S[T[39] & 0x1ff]]) <<< 9

It is possible to overlap the first stirring with the key expansion: after the first eight expansion steps, T[1] is no longer involved in
the expansion recurrence and can therefore be stirred. This requires adding one extra word to the expansion state so that both T[i] and
T[i-1] are available for stirring. After the stirring, the keys are reordered, mapping T[i] → K[7i mod 40]

PA-RISC
The PA-RISC implementation uses straight-line coding for the expansion/stir phase, rotating the key words each step. The

remaining six stirring passes are executed in a loop as per the specification. The reordering, however, is again straight-line code. If
reordering is considered as replacement rather than a permuted copy, the replacements form chains, that is:

T[1] → T[7] → T[9] → T[23] → T[1]

There are 8 chains of four, 3 chains of two, and two chains of one (T[0]→T[0] and T[20]→T[20]). Since PA-RISC can issue
two memory operations per cycle but can retire only one store per cycle, the optimal ordering loads from one chain, then interleaves the
stores with the loads from the next chain. The expected performance is 40 cycles, which is the number of times a multiple cycle loop
would have to run to perform the same task. It also eliminates the need for a temporary key array: the target key array can be used for all
intermediate values.

IA-64
The IA-64 Mars keying implementation takes advantage of the large register files, rotating registers, and rotating predicates. The

routine allocates a 48-register stack frame, all of which are rotating. The initial register usage is as follows:
r32-r34 r35 r36 r37 r38 r39 r40 r41 r42 r43 r44 r45 r46 r47 r48 r49 r50-r79

Unused kX k3 k2 k1 k0 Ti Ti-1 Ti-2 Ti-3 Ti-4 Ti-5 Ti-6 Ti-7 A B T[10..39]

The first nine computations simply initialize Ti and rotate registers to the right. After that, the registers A and B contain the first two
values for stirring. Unlike PA-RISC, this phase of the computation is enabled by the rotating predicates, where a ‘1’ is shifted in each
time through the main body of the loop. To circulate the key words, k0 → kX at the end of the loop. When the initialization phase of the
loop is finished, the loop switches to the epilogue phase, which now shifts a ‘0’ into the rotating predicates, which disables the
initialization instructions. Thus, the entire expansion/mix phase executes in one loop that runs 48 times, 6 cycles per loop.

When the first phase is finished, the intermediate key values are in the rotating registers, with r39 = T[0], r38 = T[1], …, r32
= T[7], r79 = T[8], …, r48 = T[39]. This allows the stirring phases to compute on the rotating register file. Since the registers
rotate 39 places during the stirring loop, the registers used in each phase are:

Pass T[i] T[i-1] T[0](Final)
2 r39 r38 r78
3 r78 r77 r69
4 r69 r68 r60
5 r60 r59 r51
6 r51 r50 r42
7 r42 r41 r33

The reorder is efficiently handled in a two cycle loop. In the first cycle, the key word is stored, the data pointer incremented seven
words, and a look-ahead target index counter is tested for overflow and incremented. In the second cycle, the index and data pointers are
adjusted if the index had overflowed in the previous cycle.

A comparison of AES candidates on the
Alpha 21264

 Richard Weiss Nathan Binkert
VSSAD Labs Computer Science Dept
Compaq Computer Corp, University of Michigan
334 South St Ann Arbor, MI
Shrewsbury, MA 01545 binkertn@umich.edu
Richard.Weiss@Compaq.com

ABSTRACT
We compare the five candidates for the Advanced Encryption Standard based on
their performance on the Alpha 21264, a 64-bit superscalar processor. There are
several new features of the 21264 that have a significant impact on
encryption/decryption speed. The main ones are greater potential for
instruction-level parallelism (ILP) and larger level 1 cache. The ILP comes
from the fact that the 21264 can issue four integer instructions per cycle. We
envision that for high-performance servers, there will be multiple streams of
data for encryption or decryption. The type of parallelism that we consider in
this paper is the encryption of multiple, independent blocks interleaved in the
same code loop running on the same processor. This benefits some algorithms
more than others. Rijndael and Twofish turn out to be the fastest for a single
block at a time, but RC6 is potentially the fastest when processing two blocks
at a time. The reason for this is that out-of-order execution together with an
issue width of four can be used to hide the latency of integer multiplies.

Introduction
The new AES algorithms will be used on a wide range of CPU's. The Alpha
21264 is a good representative of a 64-bit RISC architecture. Its features
include a 64K two-way set associative level-1 cache, the capability to
issue 4 integer instructions each cycle, and out-of-order execution. Since
the Alpha is most likely to be used in servers, it will probably be used
for encrypting or decrypting multiple streams of data simultaneously. This can
be done on multiple processors, but it is also relevant to look at the
efficiency of processing more than one block simultaneously on each processor,
thus increasing the throughput of the system. In the remainder of this paper,
we will use the term multiple stream or multistream to refer to more than one
block on the same processor. Most of the studies so far have looked at single
stream performance, where latency is the dominant factor. In order to get
optimal multistream performance, it will be necessary to harness the full
bandwidth of the processor. The five candidate AES algorithms have different
computational requirements, and therefore have different behavior with respect
to multistream than single stream.

We illustrate the multiple stream scenario with an example, so that there is no
ambiguity. Consider the following assembly language fragment from a loop for an

imaginary processor that can issue two instructions per cycle, at most one of
which can be a multiply:

loop:
1. Load S[0] # load key
2. T = Mull A*A

3. Load S[1] # load key
4. U = Mull B*B

5. C = Shift_right T
6. D = Shift_left T

7. E = Shift_right U
8. F = Shift_left U

9. C = C Or D
10. E = E Or F

11. B = C Add S[0]
12. A = E Add S[1]

13. Br loop

The processor will execute two instructions per cycle except for the branch. If
the latency of each instruction were one cycle, then the whole code would take
seven cycles. However, if the latency of a multiply is seven cycles and at most
one can be issued in a given cycle, then there is a five cycle stall after the
fourth instruction. Therefore, the execution time increases to 12. Now
consider what we can do for two independent blocks of data:

loop:
Load S1[0] # load key1
T1 = Mull A1*A1

Load S1[1] # load key1
U1 = Mull B1*B1

C2 = Shift_right T2
D2 = Shift_left T2

E2 = Shift_right U2
F2 = Shift_left U2

C2 = C2 Or D2
E2 = E2 Or F2

B2 = C2 Add S2[0]
A2 = E2 Add S2[1]

Load S2[0] # load key2
T2 = Mull A2*A2

Load S2[1] # load key2
U2 = Mull B2*B2

C1 = Shift_right T1

D1 = Shift_left T1

E1 = Shift_right U1
F1 = Shift_left U1

C1 = C1 Or D1
E1 = E1 Or F1

B1 = C1 Add S1[0]
A1 = E1 Add S1[1]

Br loop

The combined loop can process two blocks in only 13 cycles. The processing of
the two blocks can be overlapped in such a way that while the shift operations
for one block are waiting for the multiplies to complete, operations on the
other block can proceed. For the 21264, the latency for a multiply is actually
seven, and the latency of a load is three or more, depending on whether or not
the value is in the D-cache. The 21264 can issue up to four integer
instructions in one cycle, at most two of which can be loads. The out-of-order
processing capability is not actually used if the compiler schedules the
instructions to take into account the latency. It should be noted that future
generations of Alpha processors will have simultaneous multithreading (SMT),
which will eliminate the necessity of the programmer/compiler merging two
streams of data in one instruction stream.

The key to taking advantage of the full issue width of the Alpha is recognizing
when a program has a low number of instructions per cycle (ipc). In the above
example, this was caused by the long latency of the multiplies, but there may be
other cases where this happens. For example, in the implementation of Serpent
that we used, there were long chains of dependent logical operations, which
resulted in an ipc of slightly less than two. Thus, Serpent can achieve a
speedup of almost two by processing two streams. RC6 is similar to the example
above in that the multiplies introduce latency, which reduces the ipc to a level
for which processing two streams works well. On the other hand, Rijndael,
Twofish and Mars do not lend themselves to this approach. They can be coded
efficiently for single stream so that the table lookups can be overlapped with
the other computation and the ipc is well over two. It should be noted that an
ipc of greater than two does not preclude multistream processing, but the gains
are likely to be small. Also, it is important to use an optimized version of
the code, otherwise a low ipc will only reflect the inefficiency of the
implementation rather than the potential for multistream parallelism. For this
reason, we examine assembly language implementations in addition to the C
versions.

One of the architectural features that is missing from Alpha is the 32-bit
rotate. This requires several instructions to emulate. A fixed rotation
requires two shifts an “and” and an “or”. These can be executed in two parallel
chains and in the absence of other parallelism they have an ipc of two.

The next section presents an analysis of each algorithm in terms of ipc for a C
implementation and for an assembly code implementation.

Analysis of Algorithms
Our goal is to get a quick estimate of the performance for multistream data. We
do this by checking the timings for the Gladman C implementations of the five
candidate algorithms for single stream data and estimating the ipc. Then in some

cases, we also look at assembly language implementations to see if the ipc could
be increased. While a high ipc will rule out a gain from multistream, a low ipc
does not guarantee one. A range of techniques was used from a complete
implementation in assembly language in the case of Rijndael, to coding a single
round in assembly language for Rc6 and Twofish, to a data dependency anlysis for
Mars and Serpent. The data dependency analysis together with instruction
latency was used to estimate optimal times for the last two algorithms. In the
one case where we did an assembly language implementation, the time for this was
compared with our estimate. Finally, we estimated the gains for multiple stream
implementations.

Mars
The Mars algorithm has three phases: simple arithmetic and logical operations,
table lookup and rotations. The table lookup, which is mixed with some fixed
rotations has a four-fold parallelism. This seems to be the reason for a high
ipc, and therefore little gain from multistream. Since the Alpha does not have
a 32-bit rotate, this increases the number of instructions. For this reason,
it is both one of the fastest algorithms on a Pentium Pro but one of the slowest
on the 21264.

RC6
RC6 turns out to be a lot more efficient on the Alpha 21264 than expected
from observing the number of cycles for a single block of data. For single
stream performance, each round when coded in assembly language, takes 18 cycles
and there are 20 rounds. If we allow 20 cycles for setup, this gives a total of
380 cycles per block. This is amazingly close to the current reported figure of
382 cycles per block for the optimized C version. A single round of encryption
for two independent blocks of data simultaneously was also coded in assembly
language for an estimated 21 cycles, which is less than 11 cycles/block. For 20
rounds, this would be 210 cycles/block plus the time for setup and storing
results. This is as fast as Rijndael, and is potentially more consistent since
it uses multiplication, which have a fixed latency, and does not depend on table
lookups which could suffer occasional cache misses. In addition, if the
algorithm were used with a word size of 64, this could potentially double the
throughput, since the 64-bit versions of the operations multiply, xor, add and
rotate are as fast or faster than the 32-bit versions on Alpha processors.

Rijndael
The simplicity of the Rijndael algorithm makes it easy to analyze. We were able
to produce an efficient implementation in assembly code together with timing
results. The major computational cost for this algorithm is accessing the look-
up tables. This can be done in three instructions: extract byte, add to base
address, and load the value. For Alpha, this is relatively fast, since the
tables fit in the level-one cache. Ideally, one round of Rijndael could be done
in 18 cycles: however, in practice, this requires tuning the code to eliminate
I-cache misses, D-cache misses, etc. What we observed was that the code took
246 cycles/block when executed repeatedly. This is about 23 cycles per round.
This was the fastest algorithm we have observed for 128-bit key length. However,
since the number of rounds for Rijndael depends on the key length, this is not
the fastest for all applications.

We expect the Rijndael algorithm to scale well with future processors since
the makeup of the code is such that one quarter of the instructions are loads.
The Alpha 21264 can issue four integer instructions per cycle, and there is a
four-fold parallelism from the four S-boxes. However, this gives it a high ipc
and means that there is little gain from multistreaming. A single round of

Rijndael takes 18 cycles. The setup and exit code adds another 30 cycles to the
total to give approximately 210 cycles per block.

Serpent
Based on the C-code from Brian Gladman, this algorithm is the slowest. However,
it speeds up very well with multistreaming. The S-boxes are implemented by
sequences of bit-parallel logical operations. Due to data dependencies in this
code, the ipc is slightly less than two. The technique for estimating the two
stream performance was to modify the C code. Each round is composed of three
macros: an “xor” with the key, an S-box computation, and a linear transform.
The processing of the two streams was interleaved by repeating each macro for
the first stream with the identical macro for the second stream. The compiler
was able further mix the instructions to eliminate stalls. Nevertheless,
Serpent remains one of the slower algorithms because of the large number of
rounds and the large number of instructions per round. It should be noted that
most of the operations in Serpent operate on bits in parallel. It should be
possible to process two blocks of 32-bit words by using the full 64-bit data
path. Namely, one block would use the upper 32 bits, and the other block would
use the lower bits. There would be an extra “and” for the rotates as well as
packing the two words together, but the speedup could be close to 2x.

Twofish
Based on an assembly language coding of a single round, twofish performs
approximately as well as Rijndael on both the 21164 and the 21264 for 128-bit
key length. Since Twofish does not require more rounds for larger key lengths,
its relative performance would be better for longer keys. It can potentially do
eight S-box lookups in parallel for each round. This gives it a high ipc and
small gain for multistreaming.

Timing Results

Table 1 shows the results from optimized C-code for the Alpha 21164 and 21264
processing one block at a time. The 21164 can issue two integer instructions
per cycle and the 21264 can issue four. The results are similar to those
published by Granboulan [Gran]. Our timings were all obtained by running each of
the algorithms for key setup, encryption and decryption on a single stream of
data, one block at a time. The C-versions of these algorithms are the ones
published by Gladman [Glad1]. We ported them to Alpha by using the native cycle
count register and modifying the declarations to eliminate alignment errors in
the code. The basic idea is to time the execution of the encryption
(decryption) code running once, then time it running twice. The minimum times
over a large number of iterations are subtracted to measure the time to execute
the code without the startup costs. In addition, the encryption (decryption)
code is run once at the beginning to warm up the caches.

In order to relate our assembly code estimates to the C implementations, we
linked our assembly version of Rijndael to the Gladman harness and observed an
encryption time of 280 cycles/block. The assembly code when executed for a
large number of iterations took a minimum of 246 cycles/block. This suggests
that the C++ overhead for calling some of the C or assembly functions could be
significant.

In Table 2, we have estimated timing results for assembly language
implementations for some of the algorithms for single stream. Table 3 shows the
estimated timing for assembly code for processing multiple streams.

EV56 (21164) Mars RC6 Rijndael Serpent Twofish
Ours 701c 571c 439c 984c 442c
Granboulan
website

507c 559c 490c 998c 490c

EV6 (21264) Mars RC6 Rijndael Serpent Twofish
Ours 515c 428c 293c 854c 316c
Granboulan
website

450c 382c 285c 855c 315c

Table 1. Timing comparison in cycles/block for C code.

EV6 (21264) Mars RC6 Rijndael Serpent Twofish
Assembly code 375c 360c 210c 570c 255c

Table 2. Estimated timing for assembly code in cycles/block.

EV6 (21264) Mars RC6 Rijndael Serpent Twofish
Assembly code 375c 210c 210c 506c 255c

Table 3. Estimated time for assembly code encrypting two blocks
simultaneously. Times are in cycles/block.

Conclusions

RC6 has the most potential for parallelism when multiple streams are processed
on the same processor simultaneously in a single thread. One reason for this is
that it relies heavily on multiplication, which itself has a large degree of
parallelism for the Alpha processors. 32-bit multiplies are inherently parallel
because they operate on four bytes at the same time. Using 64-bit multiplication
would afford even more parallelism. The 21264 can issue one multiply every
cycle. The latency of seven cycles does not limit bandwidth for this algorithm
in multistream mode. An S-box lookup requires three instructions, and only
operates on one byte at a time. Note that while RC6 has variable 32-bit
rotations, one of the intermediate results from the fixed rotation by 5 is re-
used in the variable rotation.

Serpent also has a large gain from multistream processing because of the long
dependent chains of instructions and low ipc. However, because of the large
number of rounds and instructions per round, it still is slow.

Following RC6 are Twofish and Rijndael, which both use 8-bit table lookups and
linear transforms. Twofish has an advantage for longer keys, but Rijndael seems
the fastest for 128-bit keys. Based on an assembly language implementation of

Rijndael, there can be a significant difference between the estimated
performance and what can be readily achieved/observed by counting cycles outside
of the algorithm function call. Comparing code execution with timing
estimations can have a significant amount of error.

Since our estimates for the Alpha 21264 are based on instruction level
parallelism for processing multiple streams, similar behavior should be
observable for Itanium and other VLIW machines.

Acknowledgements.
We would like to thank Dr. Brian Gladman for publishing unified C
implementations of the five AES candidate algorithms. Also we thank Steve Root
for assembly language implementations of some of the algorithms.

References

[KA] Almquist, Kenneth. “AES Candidate performance on the Alpha 21164.
http://home.cyber.ee/helger/aes/kenneth.txt

[Glad1] Gladman, Brian. “Implementation experience with AES candidate
algorithms.” Second AES Conference, Feb, 1999.
http://jya.com/bg/gladman.pdf

[Glad2] Gladman, Brian.
http://www.btinternet.com/~brian.gladman/cryptography_technology/Aes/index.htm

[Gran] Granboulan, Louis. “AES Timings of best known implementations.”
http://www.dmi.ens.fr/~granboul/recherche/AES/timings.html

[SKW] Schneier, B., Kelsey, J., Whiting, D., et al. “Performance Comparison of
the AES Submissions.”

Performance Evaluation of AES

Finalists on the High-End Smart Card

Fumihiko Sano� Masanobu Koike� Shinichi Kawamuray Masue Shiba�

� Toshiba System Integration Technology Center
3-22, Katamachi Fuchu-shi, Tokyo, 183-8512, JAPAN

y Toshiba Research and Development Center
1, Komukai Toshiba-cho, Saiwai-ku, Kawasaki, 210-8582, JAPAN

ffumihiko.sano, masanobu2.koike, shinichi2.kawamura, masue.shibag
@toshiba.co.jp

Abstract. This paper reports the performance of the AES finalists,
MARS, RC6, Rijndael, Serpent, and Twofish, on the high-end smart
card that has a Z80 core with Toshiba’s arithmetic coprocessor.

1 Introduction

During the first round of AES candidate assessment, some reported the perfor-
mance evaluation of the algorithms on low-end smart cards. Their reports are
important for understanding performance of each AES candidates in memory
and computing resource-restricted environments. However, there are, so called
high-end smart cards, which are equipped with a specific hardware for acceler-
ating cryptographic processing. In general these cards are less restricted in their
resource than low-end smart cards. So, it is important for better understanding
of the AES candidates to evaluate the performance on high-end smart cards.
NIST as well expressed their interests in such evaluation in [11]. This paper de-
scribes our experience in implementing five AES finalists, and summarizes the
performances on our high-end smart card available from Toshiba[17].

The high-end smart card is substantially different from low-end one in that its
core is equipped with a crypto coprocessor. It may usually correct to say that the
amount of memory for a high-end card is larger than that of low-end one. In some
cases, however, venders supply cards with large memory amount suitable for
their specific purposes regardless of the core. Therefore, we distinguish between
high-end and low-end cards based on the type of core.

At first, we present the architectures of the core on our smart card that in-
cludes a CPU and a coprocessor architecture. Next, we describe coding rules for
our implementation and then, present experiences of five AES finalists accompa-
nied by results of 64-bit ciphers such that DES[10] and MISTY1[9] on our smart
card for reference purpose. Finally, we summarize advantages and disadvantages
for each implementation.

2 Platform

High-end smart cards available now are usually equipped with 8/16-bit micropro-
cessor and a crypto coprocessor, or accelerator for cryptographic operations[7].
To evaluate the AES finalists’ performance on high-end smart cards, we choose
Toshiba’s T6N55 chip shown in table 1. The chip is equipped with Z80 micro-
processor and a coprocessor. The coprocessor is under the control of Z80 and
it carries out arithmetic/logical operations when Z80 asks to do so. The copro-
cessor is originally designed to accelerate the large integer arithmetics. As will
described shortly, it is also suitable to accelerate some operations required to
implement AES finalists.

Table 1. Features of Toshiba’s T6N55 chip

CPU Z80
ROM 48KB
RAM 1KB
EEPROM 8KB
Max. of Modulus 2,048-bit
Internal Clock Frequency 5MHz

2.1 Z80 Architecture

The Z80 is a famous 8-bit architectured microprocessor developed by ZiLOG[15].
It has an 8-bit accumulator and a flag register, six 8-bit general-purpose registers,
two 16-bit index registers, a stack pointer (SP), and a program counter (PC).
An accumulator A and a flag register F can be paired and dealt with as if it
is a 16-bit register AF. Similarly, 8-bit registers can be paired with particular
registers as BC, DE, and HL. Z80 incorporates dual register banks. Each register
bank has each register sets such as an accumulator, a flag register, and six 8-bit
registers. Note that one can use only one side of the banks at a time. If one want
to use registers belonging to the other side of the bank, he should change the
contexts with an EXX operation.

The instruction set includes the following classes:

– Load 8-bit values to registers or an accumulator.
– Load 16-bit values to registers.
– Arithmetic or logical instructions for the accumulator with registers.
– A single bit shift or rotate instructions.
– Compare, block transfer, and search instructions.
– Branch instructions.
– Subroutine calls and returns from them.
– I/O instructions.

– Checking or setting a single bit in registers.

There are some particular instructions for extended registers or control instruc-
tions of processor. Z80 can execute addition, subtraction, AND, OR, exclusive
or (XOR), and single-bit rotation and shift. It does not have instructions for
multiplication and division.

On using the ordinary Z80 core, we should take some features of its archi-
tecture into account. It needs four clocks even for the basic instructions, such as
a no operation (NOP) or a load instructions between registers (LD r, r’). The
next fastest instructions, such as for loading a value to a register (LD r, n) con-
sume seven clocks. Operations for 16-bit register sets are more time consuming.
Although we try to use faster operations, the average number of clocks needed
for an instruction is about six.

2.2 Crypto Coprocessor

The coprocessor is developed mainly to accelerate the processing of the public
key cryptosystem. It has 512-byte RAM area (we call it the ‘CRAM’ area).
That area is segregated into two 256-byte RAM areas. The coprocessor can
execute various operations between the 256-byte RAM areas or on the 512-byte
RAM. Each maximum size of arithmetical operations supported by the crypto
coprocessor is shown in table 2.

It can execute the following classes of calculations:

– Addition, subtraction, multiplication, division, and logical operations.
– Modular multiplication.
– Modular exponentiation.
– Montgomery multiplication.
– Extended Euclidean algorithm.
– Memory transfer in CRAM area.

Here, the logical operations mean AND, OR, and exclusive OR(XOR). The mem-
ory transfer is used to transfer data on CRAM area efficiently. So, the feature is
similar to the direct memory access (DMA). The most time consuming opera-
tion is a modular exponentiation with a large exponent. Other operations, when
used in implementing AES finalists, are very fast and finish within a time for
the minimum execution time of a Z80 instruction.

The coprocessor executes logical operations between operands located on
each CRAM areas. Before executing these operations, Z80 have to put several
bytes of control words on the CRAM area in addition to the operands. Since Z80
does not perform so fast to the data on memory, using coprocessor operations
are efficient for large data, but not so much for small data.

3 Implementations

3.1 Coding Rules

When we implement the AES finalist, we apply the following rules for the coding.

Table 2. Features of Toshiba’s Crypto Coprocessor

Instruction Max. of Operands (bits)

Addition 2,048
Subtraction 2,048
Multiplication 1,024
Division 2,048
Modular Multiplication 1,024
Exponentiation 1,024

– Program codes are located on the ROM area, and we do not change the code
at any time.

– We can use all registers, i.e., registers on both sides of the banks.
– The codes run in constant time not depend on the data to avoid timing

analysis.
– We can use memory on the CRAM area if necessary.
– We write codes that generate the extension keys with on-the-fly, if possible.

A time constancy of a code is an imprecise term. We try to give more precise
idea behind the third rule. If we have only to realize the time-constancy, we may
choose an easy way to stretch the execution time by merely adding NOPs at
the end of the code. But what we really have to do is to avoid timing analysis.
So, we have to pay more attention not to leak meaningful information. If we
can successfully apply the third rule, we can prevent simple power analysis as
well as timing attack. The third rule is not sufficient, though it seems necessary,
to prevent the differential power analysis. We don’t discuss on the differential
power analysis in this paper any further.

It is interesting that we may neglect the differences between rounds, for
example the key expansion of DES need 2-bit rotations in some rounds. They
may leak some information, but it seems useless for analysis.

In this section, we report the performance of AES finalists in alphabetic
order. For comparison purpose, results for 64-bit block ciphers, such as DES,
triple DES, and MISTY1, will be shown, as well. We describe the speed of each
algorithm with clocks and RAM requirement: In each table, ‘Int.’ means that
size of required CRAM for coprocessor’s operations, and ‘Ext.’ means other work
area. Note that 5,000 clocks at 5MHz correspond to 1 millisecond. For example,
DES needs about 25,000 clocks, and thus it works in 5ms.

The code of DES does not necessarily obey the coding rules above since
some permutations for DES are realized by hard wired logic. The triple DES
is a two-keyed one, but it executes the key schedule three times with on-the-
fly. Therefore, three-keyed triple DES will have the same performance result.
MISTY means the MISTY1 algorithm[9] with eight rounds.

To apply our results easily for other processors that have similar features,
we try to reduce the memory usage on the CRAM area. But, in this paper, we
see that the memory usage is of little importance, since the platform chosen has
sufficient memory for these implementations.

3.2 MARS

It is the most difficult task for us to implement MARS on smart cards or other
limited resources. MARS has a complex high level structure such as eight rounds
of unkeyed forward mixing, eight rounds of keyed forward transformation, eight
rounds of keyed backward transformation, and eight rounds of unkeyed backward
mixing. Each of the eight rounds consists of so called type-3 Feistel network. In
a type-3 Feistel network, input data is segregated into four words. One of them
is taken as a pseudo-random function’s input and the output is used to modify
three other data words. Since MARS has a block length of 128 bits, each word
has 32 bit length.

There are three disadvantages of MARS when implemented on a smart card.
The first is that it needs 2KB table for S-boxes, but it is not serious. The second is
the weakness check of extended key on the key schedule. The last is the rotations
with variable shift amount. We discuss the last two disadvantages here.

It is necessary for MARS to implement complicated “weak” measures on the
key schedule[3]. The weak keys for MARS are different from those of DES. In
the case of DES, you may disregard the problem of weak key because it only
increases some potential threats caused by the weak key properties. However,
in the case of MARS, since the weak key check procedure is a part of the algo-
rithm specification, you have to check the weak on the key schedule certainly.
Otherwise, you may see a terrible result, such as differences in cipher text, al-
though it encrypts the same plain text with common key. As mentioned above,
the function of checking the weak on the key schedule is primarily needed.

Although implementing weak key check is necessary, it is also true that this
introduces another problem for smart card implementation. If we check the weak
and regenerate extension keys, there is a risk of applying timing attack. The
regeneration of extension keys causes difference in processing time and leaks
some information on the key. Further study of coding is necessary to avoid this
problem.

To save our time, our implementation just omits the weak key check. There-
fore, it is not complete. Our implementation is not so slow because of customiza-
tion for 256-bit key and omitting to check ‘weak’ on the key schedule. The codes
for check ‘weak’ on the key schedule will increase the requirement of ROM and
processing time.

The rotations depend on a key data or an internal data are crucial for Z80
or other 8-bit processors since we need to write codes that run in constant
time, or else an attacker can get some information about the key. Fortunately,
our coprocessor can operate modular multiplications over any modulus. We use
them for rotations. Modular multiplications on our smart card are very fast, and
finish within a single instruction of Z80. It means that we can operate modular
multiplications and data dependent rotations in a constant time and avoid timing
attack.

It seems that MARS is a prudent algorithm against cryptanalysis. But it
causes some difficulties in implementing on smart cards or similar resource-
restricted environments.

Table 3. MARS

RAM (bytes)
Total Int Ext

ROM (bytes) Time (clock)

Encrypt 60 36 24 3,977 45,588

Schedule 512 512 0 1,491 21,742

Total 512 512 24 5,468 67,330

3.3 RC6

RC6 has various parameters and is defined as RC6-w/r/b where w means the
word length, r means the number of rounds, and b means the length of key with
bytes. We write the code with the recommended parameters for AES such as
RC6-32/20/32.

RC6 has a simple structure, but the round function includes various oper-
ations such as, addition, subtraction, multiplication, and rotations depending
on a variable data. Most part of RC6 constructed by arithmetical operation.
Therefore, we operate almost all operations on the coprocessor. Furthermore,
since the coprocessor can operate up to 1,024 bits for operand, we can execute
the pair of rotations with constant shift amount in parallel. An n-bit rotations
to two data is written as follows: We duplicate each of data and put them on
corresponding CRAM area, then multiply them with 2n. As a result, we can
improve the performance and reduce the size of code.

The coprocessor can execute RC6 data encryption efficiently. RC6 has a
simple key schedule but need much iterations and does not suitable with on-the-
fly. The key schedule takes four times as long execution time as encryption.

There is an idea to improve the key schedule processing time. A precomputed
table improves the speed, but increase the size of code. It omits the computation
of 43 initial values (S[i]) with 32-bit word. The modified code copies S[i]s from
precomputed ROM table to RAM area instead of computing S[i]s with constant
values. It shall reduce about 4,000 clocks. It needs some extra code or table for
precomputed table, thus the size of code increases about 150 bytes.

On the smart cards, RC6 has a moderate encryption speed among the final-
ists, but its key schedule is slower than Rijindael or Twofish. Note that it has
been reported that on the 32-bit processor, RC6’s performance is faster than
Rijndael and Twofish[5].

Table 4. RC6

RAM (bytes)
Total Int Ext

ROM (bytes) Time (clock)

Encrypt 124 124 0 489 34,736

Schedule 90 90 0 571 138,851

Total 156 156 0 1,060 173,587

3.4 Rijndael

256-bit key is the fastest for on-the-fly key generation, since we can translate
the internal key every two rounds. 128-bit key is a little slower than 256-bit key,
since we need to make extension keys every round. In the case of 192-bit key,
since the key length is not the multiple of the block length, it is not so easy to
implement on-the-fly key generation.

The xtime is an important subroutine for time constancy. It needs modulus
operation with the primitive polynomial. Here is an example of straightforward
implementation of the xtime(a) algorithm where the original value is stored in
A register.

RLA
JR NC, SKIP
AND PRI ; PRI means the primitive polynomial.

SKIP:
... ; end.

This is a very dangerous code. Since ‘AND PRI’ operation is operated only
when the carry is ‘1’, an attacker can know whether the value excesses 28 or not
in this code. We must avoid such an implementation. Therefore, we use some
techniques to avoid differences of processing time and thus prevent cryptanalysis
using timing attack. Here is an example of xtime(a) operation with constant
time, where a is stored in A register.

RLA
LD B, A
SBC A, A
AND PRI

XOR B

RLA is a instruction of 1-bit leftward rotation for A register. If RLA is carried
out, MSB of A register is set to the carry flag. ‘SBC A, A’ is an instruction which
substract a value in A register and a carry from A register. It means that if the
carry flag is ‘1’ then A register has a value 0xff, otherwise A register has a value
0x00. Next we operate AND instruction with PRI for A register. Then we get
PRI or a value 0x00 in A register, and we can operate whether ‘XOR PRI’ or
‘NOP’ with the same instructions and processing time.

The transformation MixColumn is implemented in an efficient way shown in
section 5.1 in [4]. We implement the AddRoundKey and data transfers with the
coprocessor. Other transformations in Rijndael are not so heavy even for only
the Z80 core. Rijndael is the most efficient algorithm on the finalists on our
smart card.

A disadvantage of Rijndael is that it needs another code for decryption be-
cause of the asymmetry of encryption and decryption. If you need both encryp-
tion and decryption algorithms, it takes twice ROM area for code since most
part of it cannot be shared.

Table 5. Rijndael

RAM (bytes)
Total Int Ext

ROM (bytes) Time (clocks)

Encrypt 34 32 2 700 25,494

Schedule 32 32 0 280 10,318

Total 66 64 2 980 35,812

3.5 Serpent

There is two kinds of implementation of Serpent: ordinary implementation and
bitsliced implementation. Here is the result of an ordinary implementation of
Serpent. It is not a bitsliced implementation. It needs a 2,048-byte ROM table
on the ordinary implementation.

Serpent has various rotational operations. As is described in MARS imple-
mentation, modular multiplication with coprocessor can be used if they improve
the performance. Most of the rotations are, however, more efficient with the Z80
operations than with the coprocessor. 1-bit leftward or rightward rotations can
be implemented with the Z80 operations, and shifts with multiplies of 8-bit are
reorder of bytes. We use the coprocessor operations only for 11-bit rotations,
XOR, and memory transfer. Due to the architecture of our coprocessor, it is not
suitable to efficiently implement three-operand operation used in Serpent.

In [2], Serpent can be implemented using under 80 bytes of RAM with on-
the-fly. Our implementation needs twice more RAM, because we write it with
coprocessor’s operation XOR between halves of CRAM with different offsets.

It has more rounds than other finalists do, so its performance is not so good
as Rijndael or Twofish.

The bitsliced implementation will reduce the size of code and required RAM
with a little degradation in speed. In memory-restricted environment, bitsliced
implementation may be better than the ordinary coding. In this paper, we at-
tach importance to the speed. So, we choose the ordinary implementation for
performance comparison.

3.6 Twofish

In the case that the length of key is less than 256-bit, we need to pad out the
original key until it becomes 256-bit. We implement Twofish with 128-bit key to

Table 6. Serpent

RAM (bytes)
Total Int Ext

ROM (bytes) Time (clock)

Encrypt 68 68 0 3,524 71,924

Schedule 96 96 0 413 147,972

Total 164 164 0 3,937 219,896

take the processing time for padding into account. It includes code for padding,
and it is a little slower than 256-bit key.

There are two models for implementing Twofish, such as Feistel model and
non Feistel model[14]. We implement it with non Feistel model. We assume that it
is faster than Feistel. We use coprocessor’s operations for additions with subkeys,
XOR, and memory transfers on CRAM area, but rotations are implemented with
Z80’s rotations.

The performance of Twofish depends on the size of precomputed tables’ [14].
We consider that the case of using some tables amounted to 1,536 bytes. This
code is compact for processing the key schedule with precomputed tables. It
seems be compatible with 2200 bytes for code and table size model in [14]. The
size of precomputed tables is belongs to encryption code in table 7.

Twofish is as fast as DES on throughput. It does not have any exceptional
advantages, but we have nothing to complain about the performance.

Table 7. Twofish

RAM (bytes)
Total Int Ext

ROM (bytes) Time (clock)

Encrypt 34 32 2 2,493 31,877

Schedule 56 32 24 315 28,512

Total 90 64 26 2,808 60,389

4 Summary

We summarize the performance and the required resources on our implemen-
tations in table 8. The RAM includes required byte in the RAM area and the
CRAM area. Note that when using a coprocessor, the required amount of RAM
increase, because of the alignment rules for CRAM area.

Some finalists are designed to have heavy key schedules. They are intended
to prevent exhaustive search attacks, but resulting in speed reduction on smart
cards. We consider that Rijndael is excellent on all aspects. RC6 is as good as
Rijndael on the code point of view, but the key schedule consumes more time.

Twofish needs much ROM memory than RC6 and Rijndael because of the
table. It is faster than Triple DES and equal to DES on the throughput. It
will have good performance on any smart cards. MARS has disadvantages of
its code size caused by four of eight round iterations and a 2,048-byte table.
The speed is equal to Twofish’s one. We consider MARS has some difficulties
to check ‘weak’ on the key schedule and regenerate. Serpent has disadvantages
of its performance caused by the iterations of rounds and the difficulty of key
schedule. The bitsliced implementation will improve the requirement of ROM or
RAM, but slower than others.

We tried to write all program codes to consume as little RAM area as possible.
On the other hand, if we may regard the RAM area, especially CRAM area, as
a kind of free work space, it will be unfair to compare finalists how little work
area they consume. Nevertheless, notice that MARS consumes all the CRAM
area, whereas others consume at most half of the area.

Table 8. Comparison of AES finalists and the algorithms

RAM ROM Time (clock)
Cipher

(bytes) (bytes) Encrypt Schedule Encrypt + Schedule

MARS 572 5 5,468 45,588 4 21,742 2 67,330 3 �
RC6 156 3 1,060 2 34,736 3 138,851 4 173,587 4
Rijndael 66 1 980 1 25,494 1 10,318 1 35,812 1 only encryption
Serpent 164 4 3,937 4 71,924 5 147,972 5 219,896 5
Twofish 90 2 2,808 3 31,877 2 28,512 3 60,389 2

DES 17 772 25,398
Triple DES 17 849 72,341
MISTY 44 1,598 25,486

�: omit to check “weak” in the key schedule.

5 Conclusion

We have implemented AES finalists on a high-end smart card that is equipped
with a crypto-coprocessor. The resulting code has higher performance than that
on a low-end smart cards, since multiplication and rotation are efficiently imple-
mented using the coprocessor’s commands. Coprocessor’s RAM are also useful
for work memory, as well.

Regarding speed, Rijndael is the best one and is as fast as our DES imple-
mentation. It is twice faster than DES on the throughput. RC6 is suitable for
our smart card same as on the 8051[6, 8], but not to be compared with Rijndael
or Twofish because of the key schedule.

For smart card implementation, it is necessary to perform key schedule at
least for every processing block, in order to save memory areas to store extended

key. For the same reason, it is desirable for key schedule to be suitable for on-
the-fly key generation. As a result, design concept for key schedule affects the
performance very much, and those algorithms that have heavy key schedule are
not advantageous for smart card implementation.

Finally, we report the performance of E2[12] that is a candidate on the first
round in the appendix.

References

1. R. Anderson, E. Biham, and L. Knudsen, \Serpent: A Proposal for the Advanced

Encryption Standard", AES submission, 1998.
2. R. Anderson, E. Biham, and L. Knudsen, \Serpent and Smartcards", CARDIS
’98, 1999, available on http://www.cl.cam.ac.uk/~rja14/serpent.html.

3. C. Burwick, D. Coppersmith, E. D’Avignon, R. Gennaro, S. Halevi, C. Jutla,
S. M. Matyas Jr., L. O’Connor, M. Peyravian, \MARS -a candidate cipher for

AES", AES submission, 1998.
4. J.Daemen, V.Rijmen, \AES Proposal: Rijndael", AES submission, 1998.
5. B. Gladman, “AES Algorithm Efficiency”,
http://www.btinternet.com/~brian.gladman/cryptography technology/Aes/

6. G. Hachez, F. Koeune, and J. Quisquater, \cAESar results: Implementation of

Four AES Finalists on Two Smart Cards", The second AES conference, 1999,
available on http://www.dice.ucl.ac.be/crypto/CAESAR/caesar.html.

7. H. Handschuh, and P. Paillier, \Smart Card Crypto-Coprocessors for Public-Key

Cryptography", CryptoBytes, Vol. 4, No. 1, RSA Laboratories, 1998.
8. G. Keating, \Performance Analysis of AES candidates on the 6805 CPU core",
The second AES conference, 1999,
available on http://www.ozemail.com.au/~geoffk/aes-6805/.

9. M. Matsui, \New Block Encryption Algorithm MISTY", Fast Software Encryp-
tion, 4th International Workshop Proceeding, LNCS 1267, Springer-Verlag, 1997,
pp.54-68.

10. National Bureau of Standards, \Data Encryption Standard", U.S.Department of
Commerce, FIPS 46-3, October 1999.

11. J. Nechvatal, E. Barker, D. Dodson, M. Dworkin, J. Foti, and E. Roback, \Sta-
tus Report on the First Round of the Development of the Advanced Encryption

Standard", http://csrc.nist. gov/encryption/aes/round1/r1report.pdf
12. Nippon Telegraph and Telephone Corporation, \Speci�cation of E2 { a 128-bit

Block Cipher", AES submission, 1998.
13. R.L. Rivest, M.J.B. Robshaw, R. Sidney, Y.L. Yin, \The RC6 Block Cipher",

AES submission, 1998.
14. B. Schneier, J. Kelsey, D. Whiting, D. Wagner, C. Hall, \Two�sh; A 128-Bit Block

Cipher", AES submission, 1998.
15. ZiLOG, \Z80 Microprocessor Products",

available on http://www.zilog.com/products/z80.html
16. http://csrc.nist.gov/encryption/aes/round2/Round2WhitePaper.htm, 1999.
17. http://www.toshiba.co.jp/about/press/1999 02/pr j0301.htm, (in Japanese).

A E2

E2 is not selected as a finalist for the second round review. But it has a good
performance, especially encryption speed without key schedule. The serious dis-
advantages of E2 are that it has time consuming key schedule and can’t execute
it with on-the-fly. Fortunately, since the RAM usage fits on the half of CRAM
area, we select a way to extend all round keys on the half of them, at first. In this
case, E2 is efficient for encryption just like the report in [6]. The round function
is designed as suitable for byte oriented operations. It is good for the Z80 archi-
tecture. It is, however, difficult for Z80 to execute multiplication on the IT and
division on the FT. We use the coprocessor’s commands for these operations.
Those commands include XOR, memory transfer, multiplication, and inverse.

Table 9. E2

RAM (byte)
Total Int Ext

ROM (byte) clock

enc 26 24 2 1,519 17,018

key 548 512 36 296 79,358

Total 548 512 36 1,815 96,376

How Well Are High-End DSPs Suited for the AES

Algorithms? ∗

AES Algorithms on the TMS320C6x DSP

Thomas J. Wollinger1, Min Wang2, Jorge Guajardo1, Christof Paar1

1ECE Department

Worcester Polytechnic Institute

100 Institute Road

Worcester, MA 01609, USA

Email: {wolling, guajardo, christof}@ece.wpi.edu

2 Texas Instrument Inc.

12203 S.W. Freeway, MS 722

Stafford, TX 77477, USA

Email: minwang@micro.ti.com

Abstract

The National Institute of Standards and Technology (NIST) has announced that one of

the design criteria for the Advanced Encryption Standard (AES) algorithm was the ability

to efficiently implement it in hardware and software. Digital Signal Processors (DSPs) are a

highly attractive option for software implementations of the AES finalists since they perform

certain arithmetic operations at high speeds, they are often smaller and more energy-efficient

than general purpose processors, and they are commonly used for the rapidly growing market

of embedded applications. In this contribution we investigate how well modern high-end DSPs

are suited for the five final candidates chosen after the second AES conference. As a result of

our work we will compare the optimized implementations of the algorithms on a state-of-the-art

DSP.

Keywords: cryptography, DSP, block cipher, implementation

∗This research was supported in part through a graduate fellowship by secunet Security Networks AG and a grant

from the Texas Instrument University Research Program.

1

1 Introduction

The National Institute of Standards and Technology (NIST) has initiated a process to develop a

Federal Information Processing Standard (FIPS) for the Advanced Encryption Standard (AES),

specifying an encryption algorithm to replace the Data Encryption Standard (DES) which expired

in 1998 [14]. NIST has solicited candidate algorithms for inclusion in AES, resulting in fifteen

official candidate algorithms of which five have been selected as finalists. Unlike DES, which was

designed specifically for hardware implementation, one of the design criteria for the AES candidate

algorithms is that they can be efficiently implemented in both hardware and software. Thus, NIST

has announced that both hardware and software performance measurements will be included in their

efficiency testing. Several earlier DSP’s contributions looked into the software implementation of

the AES algorithms on various platforms [1]. However, there was only one publication dealing with

the implementation of the candidate algorithms on a Digital Signal Processor (DSP) [9].

Digital Signal Processors are a distinct family of micro processors. In comparison to the more

common general purpose processors such as those offered by, e.g., Intel and Motorola, DSPs allow

for fast arithmetic, special instructions for signal processing applications, real-time capabilities, rel-

atively lower power, and relatively lower price (obviously, those statements tend to over-generalize

and should not be taken too literally). The main application areas of DSPs are embedded systems,

such as wireless devices, cable and Digital Subscribe Line (DSL) modems, various consumer elec-

tronic devices, etc. With the predicted increase of embedded applications and pervasive computing,

it is not unreasonable to expect that DSPs and DSP-like processors will become more common-

place. At the same time, it seems likely that many future embedded applications will need some

form of encryption capability, for instance, for assuring privacy over wireless channels.

The questions that we try to address in this contribution are: How well are high-end DSPs

suited for the implementation of the AES finalists? Can modern DSPs compete with general

purpose computers in terms of speed?

In this paper, we focus on the implementation of the five AES finalists on a Texas Instruments

TMS320C6000 DSP platform. In particular, the implementations are on a 200 MHz ’C62x/’C64x

which performs up to 1600/8800 million instructions per second (MIPS) and provides thirty-

two/sixty-four 32-bit registers and eight independent functional units.

2 Previous Work: Cryptography on DSPs

The field of implementing cryptographic algorithms on special platforms is very active. However,

the research done on implementation of cryptographic schemes on a DSP is limited. There are

a few papers that deal with public-key cryptography. There is one previous paper about the

implementation of the AES candidates on a DSP. The papers [3, 7, 10] deal primarily with the

implementation of public key algorithms on DSP processors. The main conclusion of these papers

is that DSPs are a good choice for these algorithms due to the integer arithmetic capabilities of

DSPs.

2

Reference [7] also describes the implementation of DES on a Motorola DSP 56000. It was found

that the algorithm encrypts at roughly the same speed as a contemporary PC (20 MHz Intel 80386).

Karol Gorski [9] commented on the set of the AES Round 1 candidate algorithms, based on

the timings obtained on the TI TMS320C541 DSP. Reference [9] used the C implementation by

Brian Gladman, compiled with full compiler level optimizations. The resulting low speeds of the

algorithms were due to the ’C54x 16 bit operations which are not ideal for most of the AES

candidates. There was also no effort made to optimize the algorithms beyond those optimizations

automatically performed by the C compiler.

3 Methodology

3.1 The Implementation of the Five AES Finalists

We implemented Mars, RC6, Rijndael, Serpent and Twofish on a TMS320C6201 DSP. RC6 was also

implemented on the C64x DSP. As the basis of the implementations we used either the reference or

optimized C code provided by the algorithm’s authors, or the C code written by Brian Gladman [8].

It is important to point out the way we chose to code each algorithm, because they all offer

several implementation options. In [6], the authors of Rijndael proposed a way of combining the

different steps of the round transformation into a single set of table lookups. Each table has

256 4-byte word entries. Similarly, our Twofish implementation uses the ”Full Keying” option as

described in the specification [13]. Inother words we used 4 KByte tables which combine both the S-

box lookups and the multiplication by the column of the MDS matrix. RC6 is a fully parameterized

encryption algorithm [11]. The version of RC6 that we implemented is RC6-32/20/16. Mars was

coded in the original version as stated in the algorithm specifications in [4], with 8, 16, and 8

rounds of “forward mixing”, “main keyed transformation”, and “backwards mixing”, respectively.

Finally, in [2] the authors described an efficient way to implement Serpent. Thus, we implemented

the S-boxes as a sequence of logical operations which were applied to the four 32-bit input blocks.

3.2 Tools and Optimization Effort

The source code was first compiled using the standard Texas Instruments C compiler (versions 3.0

and 4.0 alpha), utilizing the highest level of optimizations (level 3) available. For further information

about the levels of optimization performed by the compiling tools, see [15, page 3–2 and 3–3].

After the implementation of the C code version, we optimized the encryption and decryption

functions of the algorithms so that the compiler could further optimize it. In order to do so, we took

advantage of the 32-bit data bus which is capable of loading 32-bit words at a time. We performed

math operations with Intrinsic Functions to speed up the C code. Intrinsic Functions are similar

to an additional mathematical Run-Time Support (RTS) library. They allow the C code to access

hardware capabilities of the ’C6x devices while still following ANSI C coding practices. We also

tried to use as many of the functional units in parallel as possible, e.g., by replacing constant

3

multiplication by shifts, by unrolling loops, or by preserving loops.

We further rewrote the encryption and decryption function for most algorithms in linear as-

sembly to achieve performance improvements. Linear assembly is assembly code that has not been

register-allocated and is unscheduled. The assembly optimizer assigns registers and uses loop op-

timization to turn linear assembly into highly parallel assembly. However, we did not program in

pure assembly which is a very challenging and time consuming task on a complex processor such

as the ’C6201, with eight independent functional units.

3.3 Parallel Processing: Single-Block Mode vs. Multi-Block Mode

In addition to the optimizations described above, we implemented a second version of code in

which data blocks can be processed in parallel. With parallel processing, the encryption and the

decryption functions can operate on more than one block at a time using the same key. This allows

better utilization of the DSP’s functional units which leads to better performance.

With parallel processing, however, the speedups may only be exploited in modes of operations

which do not require feedback of the encrypted data, such as Electronic Code-Book (ECB) or

Counter Mode. When operating in feedback modes such as Ciphertext Feedback mode, the cipher-

text of one block must be available before the next block can be encrypted. For the remainder

of our discussion, single-block mode will denote feedback modes and multi-block mode will denote

non-feedback modes.

3.4 The TMS320C62x Digital Signal Processor

We chose the TMS320C6201 fixed point digital signal processor out of the TMS320C62x family. In

this subsection we introduce the key architectural features of the DSP which are relevant for our

implementation.

The ’C6201 performs up to 1600 million instructions per second (MIPS) at a clock rate of 200

MHz. These processors have thirty-two 32-bit registers and eight independent functional units.

As shown in Figure 1, the ’C62x has four pairs of functional units. The architecture of the DSP

has effectively been divided in two identical halves. Each half is composed of four independent

functional units (.S, .M, .L, and .D) and a bank of sixteen 32-bit registers. The processor also

allows limited communication between the two halves.

The multiplier unit is indicated by .M and accepts two 16-bit words as an input and outputs a

32-bit result. In addition to the two multipliers, the processor provides six arithmetic logic units

(ALUs). The .L unit, that has the ability to perform 32/40-bit arithmetic operations, comparisons,

normalization count for 32/40-bits, and 32-bit logical operations. With the .D unit we can add 32-

bit words, subtract, do linear and circular address calculation, and write to and load from memory.

The .S unit provides the functionality for 32-bit arithmetic operations, 32/40-bit shifts, 32-bit bit-

field operations, 32-bit logical operations, branching, constant generation, and register transfers

to/from the control register file [16].

4

.

.

.

.

.

.

A0

A1

A2

A3

A4

A5

A6

A15

B0

B1

B2

B3

B4

B5

B6

B15

32-bits 32-bits

.S1 .S2

.M1

.L1

.D1

.M2

.L2

.D2

Data Memory

Register File A Register File B

Figure 1: TMS32062x Functional Units [16]

The ’C6201 includes a bank of on-chip memory and a set of peripherals. Program memory

consists of a 64K-byte block that is configurable as cache or memory-mapped program space. A

64K-byte block of RAM is used for data memory. The peripheral set includes two serial ports, two

timers, a host port interface, and an external memory interface.

The ’C6000 development environment includes: a C Compiler, an Assembly Optimizer to sim-

plify programming and scheduling, and the Code Composer StudioTM, which is a MS Windows

debugger interface for visibility into source execution. All of the ’C6000 devices are based on the

same CPU core featuring VelociTITM, a highly parallel architecture that provides software-based

flexibility and good code performance for multi-channel and multi-function applications.

4 Results

4.1 Results on the TMS320C6201 DSP

All the figures presented in this section refer to a 128-bit block encryption or decryption with a

key of 128 bits. The algorithms are timed with the Code Composer Simulator, which is part of

the Code Composer StudioTM for the TMS320C6201 DSP. Code Composer Simulator uses the

simulated on-chip analysis of a DSP to gather profiling data.

The reported results in Table 1 refer to either a C or a Linear Assembly implementation. In

the cases where we had the possibility to choose between two implementations we referenced the

fastest results found by us. All the timings shown are obtained from a C implementation using the

compiler version 4.0 alpha unless otherwise indicated.

5

To convert cycle counts into encryption or decryption rates expressed in bits per second, we

divided 128 ∗ 200 ∗ 106 by the cycle count. For example, the encryption speed of Twofish in multi-

block mode is computed as: 128 ∗ 200 ∗ 106/184 = 139.1 Mbit/sec.

The order of the algorithms is based on the mean speed of encryption and decryption in multi-

block mode. The mean speed can simply be calculated by adding the speed of the encryption and

decryption functions and then dividing the sum by two. For instance, the mean speed in multi-block

mode for RC6 equals (128.0 + 116.4)/2 = 122.2 Mbit/sec.

DSP DSP Pentium-Pro

multi-block mode single-block mode DSP multi-block

@ 200MHz @ 200MHz @ 200MHz mode/Pentium

cycles Mbit/sec cycles Mbit/sec Mbit/sec

Twofish encryption 184 139.1 308 83.1 95.0 [17] 1.5

decryption 172 148.8 290 88.3 95.0 [17] 1.6

RC6 encryption 200 † 128.0 292 87.7 97.8 [12] 1.3

decryption 220 † 116.4 281 91.1 112.8 [8] 1.03

Rijndael encryption 228 ‡ 112.3 228 ‡ 112.3 70.5 [8] 1.6

decryption 269 ‡ 95.2 269 ‡ 95.2 70.5 [8] 1.4

Mars encryption 285 89.8 406 63.1 69.4 [8] 1.3

decryption 280 91.4 400 64.0 68.1 [8] 1.3

Serpent encryption 772 33.2 871 ∗ 29.4 26.8 [8] 1.2

decryption 917∗ 27.9 917 ∗ 27.9 28.2 [8] 1.0

Table 1: Performance results of the AES candidates on the TMS320C6201

Here are comments about the results in Table 1:

• The highest level of optimizations were used for all algorithms, with the exception of Serpent

decryption. The loop in Serpent is too complex and too long so the optimizer was only

able to schedule the code in a lower level. Hence, the performance figures for decryption are

slightly worse than the numbers for encryption. In addition, the throughput of the decryption

function is the same for single-block and multi-block modes.

• The linear assembly code of Rijndael can be optimized by the tools very efficiently. In this

case we could not gain a performance advantage by parallel processing, which results in the

same speed for single-block and multi-block modes.

• In all cases, except for RC6 encryption, we encrypted and decrypted two blocks at a time

in multi-block mode. We were able to process three blocks at a time in parallel for RC6

∗C implementation using compiler version 3.0
†Linear assembly implementation using compiler version 3.0
‡Linear assembly implementation using compiler version 4.0 alpha

6

encryption. Hence, we could use a large number of functional units in parallel and could

reach a high throughput. For some of the other algorithms we tried to use three blocks in

parallel as well. However, the optimizer was not able to create efficient loops due to the

number of instructions.

4.1.1 Results in Multi-Block Mode

In Table 1 we compare the throughput speeds of the TMS320C6201 and a 200MHz Pentium Pro. In

order to allow for an easy comparison we added the rightmost column to the table, where we divided

the highest speed in multi-block mode on the DSP with the performance numbers on the Pentium.

In this way we normalized our numbers by the speed achieved on the Pentium Pro platform. If

the ratio is larger than one, the implementation of the algorithm on the DSP is faster than the one

on the Pentium. One can see that in all cases but one we could achieve higher throughput on the

DSP than the best known results on a Pentium Pro II with the same clock rate. Only for Serpent

decryption were the Pentium and the DSP speeds almost identical.

We can also see from the performance ratio in the rightmost column how well the algorithm

structure is suited for the DSP. Rijndael encryption and Twofish decryption gain the most when

implemented on the DSP compared to the implementation on a Pentium. In both cases the quotient

of the throughputs is approximately 1.5, which means that the speed of the particular function on

the DSP is roughly 50% faster than the same function on the Pentium.

In addition to our above analysis, we ranked the AES finalists based on their performance

on the ’C6000 DSP family. This ranking compares the mean speed of the algorithms in multi-

block mode. Twofish with a mean speed of 144.0 Mbit/sec and RC6 with 122.2 Mbit/sec are the

fastest algorithms. These two algorithms are followed by Rijndael with a mean throughput of 103.8

Mbit/sec and Mars with 90.3 Mbit/sec. Serpent with 30.6 Mbit/sec is poor in terms of throughput

on the DSP.

4.1.2 Results in Single-Block Mode

The results stated above refer only to the cases in which we used multi-block mode. If we look at the

single-block mode case, Rijndael encryption and decryption as well as Serpent encryption perform

better on the DSP than on a Pentium. Rijndael encryption with 112.3 Mbit/sec is almost 60%

faster than the corresponding Pentium implementation and Rijndael decryption at 95.2 Mbit/sec

is almost 40% faster. Judged by their speed performance on the C62x, Serpent decryption, Mars

encryption and decryption, and Twofish decryption are slightly worse than on a general-purpose

computer. The remaining functions, Twofish encryption and RC6 encryption and decryption, are

much slower than the corresponding Pentium functions.

If we had ranked the algorithms based on their mean speed in single-block mode, Rijndael with

103.8 Mbit/sec would be the fastest, followed by RC6 with 89.4 Mbit/sec, and Twofish with

85.7 Mbit/sec. Mars with 63.6 Mbit/sec and Serpent with 28.7 Mbit/sec are not as good in

single-block mode.

7

We would like to point out that all of our “best” results were achieved using the methodology

described above, and that other coding styles, such as pure assembly, might be able to achieve

higher throughputs.

4.1.3 Comparison of the Results with the Critical Path of the Algorithms

Craig S.K. Clapp analyzes the critical path of Crypton, E2, and the five AES finalists. In his

analysis, [5] only counts instructions and cycles associated with the transformation of a plaintext

block into a ciphertext block in ECB mode. In other words, instructions associated with loading

of plaintext, storing of ciphertext, and loop overhead are ignored. Clapp concludes that based on

the length of its critical path, Rijndael stands well ahead of the pack with 71 cycles/block. Twofish

(162 cycles/block), RC6 (encryption with 181 cycles/block and decryption with 161 cycles/block),

and Mars (214 cycles/block) form the second tier. Finally, Serpent’s critical path is a factor of two

longer than the next nearest candidate (encryption with ≤ 526 cycles/block and decryption with

≤ 436 cycles/block).

The results that we achieved in single-block mode are in agreement with those obtained by

analyzing the critical path. Rijndael is in both cases by far the fastest algorithm. The throughput

of RC6 is slightly better than the throughput of Twofish on the DSP, even though the critical

path of Twofish is a little shorter than the one from RC6. Mars is ranked in both, the DSP speed

analysis and the critical path analysis of [5], the same. Serpent results trail the nearest candidate

in both analyses by more than a factor of two. It is important to point out that while the critical

path for decryption is shorter than that for encryption in Serpent, decryption is actually slower

than encryption in the DSP implementation.

The discrepancies are due to our use of automatic optimization. The optimizer tries to create

the best machine code possible. Nevertheless, the optimizer might not be able to reach the cycle

count of the critical path for some algorithms. We might be able to overcome these differences by

rewriting the functions in full assembly. We were not able to do this because of time constraints.

4.1.4 Memory Usage

Embedded system applications have often memory constrains. Hence this subsection looks at the

memory requirements of our implementation. The ’C6201 has three 16 Mbyte regions of external

memory. These regions can support synchronous or asynchronous 32-bit access. There is also

one 4 Mbyte region of asynchronous external memory which is typically used to store the boot

information. The ’C6201 contains one megabit of internal RAM which is split between program

and data memory. All this internal memory is zero wait-state. Table 2 summarizes the memory

usage of the algorithms in our implementation.

As it can be seen from Table 2, the memory usage of the algorithms varies almost by an order

of magnitude. RC6 uses the least program memory and Serpent the most. In some cases, e.g. for

Serpent, the algorithms require a large amount of program memory, because we optimized them for

speed. Hence we calculated the look-up tables on the “fly” with boolean-algebra and this increases

8

Memory Usage Memory Usage

multi-block mode single-block mode

Data ROM Program Data ROM Program

/Bytes /Bytes /Bytes /Bytes

Mars 3072 3072

encryption 3280 2428

decryption 2956 2372

RC6 0 0

encryption 608 576

decryption 672 576

Rijndael 16384 16384

encryption 2360 1180

decryption 2960 1480

Serpent 0 0

encryption 5844 3568

decryption 6016 5104

Twofish 168 168

encryption 1416 700

decryption 1420 708

Table 2: Memory Usage on the TMS320C6201

the program code. The data ROM represents constant arrays, which in our cases correspond to

the look-up tables. RC6, for example, uses no tables, hence the data ROM is zero.

4.2 Results on the TMS320C64x

The TMS320C64x clock can be scaled to up to 1.1 GHz and can perform up to 8800 MIPS. The

C64x has extended parallelism support with quad 8-bit and dual 16-bit operations. Also, the sixty-

four 32-bit registers and 8 functional units lead to better performance. We also took advantage

in our implementation of the better data access and the extended instruction set of the C64x (for

example, rotation, Galois field multiplication, etc.).

We chose RC6 to be implemented on the C64x. The results that we present in this section are

based on a C implementation and are compiled with compiler version 4.0 beta.

The results in Table 3 for RC6 achieved with the ’C64x in multi- and single-block mode are

better than the results we got from the ’C6201. RC6 encryption in multi-block mode is almost 70%

faster than on a general-purpose machine.

At this point it is important to remark that the optimizer tools are quite advanced for the ’C62x,

but are still in a very early stage for the ’C64x. That means if we only perform C code optimizations,

9

we will not get good performance numbers on the ’C64x. We expect an improvement when we

rewrite the functions in linear assembly. We did a detailed analysis for hand coded assembly RC6

and we estimated a performance of 229 cycles/block (for each encryption- and decryption-function)

in single-block mode.

DSP DSP Pentium-Pro

multi-block mode single-block mode DSP multi-block

@ 200MHz @ 200MHz @ 200MHz mode/Pentium

cycles Mbit/sec cycles Mbit/sec Mbit/sec

RC6 encryption 155 165.2 277 92.4 97.8 [12] 1.7

decryption 154 166.2 278 92.1 112.8 [8] 1.5

Table 3: Performance results of two AES candidates on the TMS320C64x

5 Conclusions

“How well are high-end DSPs suited for the AES algorithms?” was the main question that we

asked ourselves as a motivation to write this paper. We noticed that in almost all cases the AES

finalists’ encryption and decryption functions reach higher speeds on the ’C6000 DSPs than the best

known Pentium Pro II implementations, at identical clock rates. It was observed that some of our

implementations on the ’C6201 were over 50% faster than the best known performance numbers on

the Pentium platform. In addition, our implementation of RC6 on the ’C64x reached speeds which

were almost 70% faster than those of the Pentium. RC6 on the ’C64x encrypts with a throughput

of 165.2 Mbit/sec and decrypts with a speed of 166.2 Mbit/sec. Twofish with an encryption speed

of 139.1 Mbit/sec and decryption of 148.8 Mbit/sec was by far the fastest throughput that we

obtained on the ’C6201. Hence, we can conclude from our results, that state-of-the-art DSPs are

well suited for the architecture of the AES finalists.

6 Acknowledgment

We would like to thank William Cammack from TI for his helpful comments.

References

[1] Second Advanced Encryption Standard (AES) Conference. Rome, Italy, March 1999. National

Institute of Standards and Technology (NIST).

[2] R. Anderson, E. Biham, and L. Knudsen. Serpent: A Proposal for the Advanced Encryption

Standard. In First Advanced Encryption Standard (AES) Conference, Ventura, CA, 1998.

10

[3] P. Barrett. Implementing the Rivest Shamir and Adleman Public Key Encryption Algorithm

on a Standard Digital Processor. In A. M. Odlyzko, editor, Advances in Cryptology - Crypto

’86, volume 263, pages 311–326, Berlin, Germany, August 1986. Springer-Verlag.

[4] Carolynn Burwick, Don Coppersmith, Edward D’Avignon, Rosario Gennaro, Shai Halevi,

Charanjit Jutla, Stephen M. Matyas Jr., Luke O’Connor, Mohammad Peyravian, David Saf-

ford, and Nevenko Zunic. Mars - a candidate cipher for AES. In First Advanced Encryption

Standard (AES) Conference, Ventura, CA, 1998.

[5] Craig S.K. Clapp. Instruction-level Parallelism in AES Candidates. Second AES Conference,

March 1999. http://csrc.nist.gov/encryption/aes/reound1/conf2/papers/clapp.pdf

[6] J. Daemen and V. Rijmen. AES Proposal: Rijndael. In First Advanced Encryption Standard

(AES) Conference, Ventura, CA, 1998.

[7] Stephen R. Dussé and Burton S. Kaliski Jr. A Cryptographic Library for the Motorola

DSP56000. In Ivan B. Damg̊ard, editor, EuroCrypt ’90, volume 473 of Lecture Notes in

Computer Science, pages 230–244, Berlin, Germany, May 1990. Springer-Verlag.

[8] Brian Gladman. AES Algorithm Efficiency, 2000.

http://www.btinternet.com/~brian.gladman/cryptography_technology/Aes2/

index.htm

[9] Karol Gorski and Michal Skalski. Comments on the AES Candidates. Technical report,

National Institute of Standards and Technology, ENIGMA SOI Sp. z o.o., Warsaw, Poland,

April 1999. http://csrc.nist.gov/encryption/aes/round1/comments/R1comments.pdf

[10] Kouichi Itoh, Masahiko Takenaka, Naoya Torii, Syouji Temma, and Yasashi Kurihara. Fast

Implementation of Public-Key Cryptography on a DSP TMS320C6201. In Çetin K. Koç and

Christof Paar, editors, Cryptographic Hardware and Embedded Systems, volume 1717 of Lecture

Notes in Computer Science, pages 61–72, Berlin, Germany, August 1999. Springer-Verlag.

[11] R. Rivest, M.J.B. Robshaw, R. Sidney, and Y.L. Yin. The RC6TM Block Cipher. In First

Advanced Encryption Standard (AES) Conference, Ventura, CA, 1998.

[12] RSA Security. The RC6 Block Cipher - Performance, 1999.

http://www.rsasecurity.com/rsalabs/aes/rc6_performance.html

[13] B. Schneier, J. Kelsey, D. Whiting, D. Wagner, and C. Hall. Twofish: A 128-Bit Block Cipher.

In First Advanced Encryption Standard (AES) Conference, Ventura, CA, 1998.

[14] W. Stallings. Cryptography and Network Security. Prentice Hall, Upper Saddle River, New

Jersey 07458, 2nd edition, 1999.

11

[15] Texas Instruments Incorporated. TMS320C6x Optimizing C Compiler User’s Guide. Custom

Printing Company, Owensville, Missouri, February 1998.

[16] Texas Instruments Incorporated. TMS320C6x/C67x Programmer’s Guide. Custom Printing

Company, Owensville, Missouri, February 1998.

[17] D. Whiting. Twofish Timing Measurements. electronic mail personal correspondence, January

2000.

12

Fast Implementations of AES Candidates

Kazumaro Aoki1 and Helger Lipmaa2

1 NTT Laboratories
1-1 Hikarinooka, Yokosuka-shi, Kanagawa-ken, 239-0847 Japan

maro@isl.ntt.co.jp
2 Küberneetika AS

Akadeemia tee 21, 12618 Tallinn, Estonia
helger@cyber.ee

Abstract. Of the five AES finalists four—MARS, RC6, Rijndael, Twofish—
have not only (expected) good security but also exceptional performance on the
PC platforms, especially on those featuring the Pentium Pro, the NIST AES
analysis platform. In the current paper we present new performance numbers
of the mentioned four ciphers resulting from our carefully optimized assembly-
language implementations on the Pentium II, the successor of the Pentium Pro.
All our implementations follow well-defined API and timing conventions and
sensible guidelines, like no using of self-modifying code and key-specific static
data — i.e., tricks that speed up the implementation but at the same time restrict
the field of application. Our implementations are up to26% percent faster than
previous implementations. Our work also shows how a simple change (inclu-
sion of the MMX technology) in the analysis platform can influence the relative
encryption speed of different ciphers. To enable everyone to compare their imple-
mentations to ours, we also fully specify our procedures used to obtain the speed
numbers.

1 Introduction

For more than20 years, DES [FIP77] has been a widely employed cryptographic stan-
dard. While the best cryptanalytic attacks against DES (differential and linear cryptanal-
ysis) are still highly impractical, during the last years DES has became obsolete for its
too short key and block sizes, not withstanding the current advances in computing tech-
nology. Motivated by this, NIST initiated a new effort to replace DES as a standard.21
algorithms were submitted and15 algorithms were accepted as AES (Advanced Encryp-
tion Standard) candidates, of which5 candidates—MARS [BCD+98], RC6 [RRSY98],
Rijndael [DR98], Serpent [ABK98], Twofish [SKW+99b]—were chosen to the second
round.

However, the AES process was started not only due to the theoretical reasons: there
are a few well-known constructions, including 3DES, that seem to have very good secu-
rity margins. Unfortunately, 3DES, based on the hardware-oriented DES, is unsatisfy-
ingly slow on the modern32- and64-bit computer architectures: modern block ciphers
are up to10 times faster than 3DES. Regardless of these ciphers having unproven (even
by time) security properties, they are widely used in the industry by pragmatic reasons:
hardware applications like1 GBits/s Ethernet or on-the-fly encryption of160 MByte/s

SCSI hard disks are requesting for faster ciphers. Clearly, the situation of having a
(moderately) secure and (moderately) fastde jurestandard DES, a (probably) secure
and (clearly) slowde factostandard 3DES and some fast but with unknown security
marginde factostandards is not acceptable: there should be a single standard that is
both secure and fast. This is one of the reasons why, when inviting the public to pro-
pose candidates for the AES, NIST explicitly stated that the new standard should be
both “more secure and faster” than 3DES.

While security of the candidates cannot be exactly quantified by the currently known
methods, it seems to be easier to measure their speed. However, there is still a lot of
ambiguity in answering the question what AES candidate is the fastest. Several pa-
pers (including [Lip99,SKW+99a]) have compared AES candidates speed, but since
the implementations quoted in them are often incomparable (or based on pure estima-
tions), one cannot make direct conclusions about the efficiency of the ciphers based
on the published papers. Incomparability stems from the different implementation as-
sumptions, API’s, hardware (e.g., processors) and software (e.g., compilers) used by
implementers. Even more, some of the timings presented in previous papers correspond
to “show-case” (as opposed to practically applicable) implementations, some exam-
ples of those being the fastest implementation of Twofish [SKW+99b] that uses self-
modifying code and Brian Gladman’s implementations of AES candidates [Gla99] that
use a number of key-specific static variables instead of allocating a register to address
them, therefore effectively freeing some registers for other uses. Especially in the case
of the Pentium family, where the number of available registers is very restricted, such
implementations may result in a huge speed up. However, both types of implementation
tricks restrict the application area of the implementation.

In the current paper we try to give a satisfactory answer to the question “what cipher
is the fastest on the Pentium II” by carefully optimizing the4 fastest AES candidates—
MARS, RC6, Rijndael and Twofish—in Pentium II assembly, using for all implementa-
tions exactly the same, reasonable in practice, API and speed measurement conditions
for all the ciphers. Due to this, our results are much fairer than most of the previously
known ones: our implementations can be seen as black boxes applicable in almost any
possible application of block ciphers on an environment featuring Pentium II. Addi-
tionally, careful optimization process resulted in implementations that are clearly faster
than the previously known implementations. (Except for Twofish, which has still a faster
“show-case” implementation.)

We start the paper by describing our platform of choice (Section 2), implementation
philosophy and API (Section 3). Section 4 briefly surveys our results, and Section 5
gives more details on the problems encountered when implementing the ciphers. More
information about the Pentium II is given in the Appendices.

2 Choice of the Platform

Our first principal choice was the decision what processor to use. By purely pragmatic
reasons we decided that the implementation environment equips an Intel Pentium family
CPU: while this family is not the most modern processor family available, it is the most
widespread one at the moment of writing this paper and most probably also during the

2

next few years. Therefore, since in the foreseeable future most of the software-based
commercial security applications run on the Pentium family (as recognized also by the
AES finalists designers), this family has the most direct impact on the choice of a cipher
by security consumers.

At second, from the Pentium family we decided to choose the Pentium II processor.
At first, it is a more advanced processor than Pentium Pro, the NIST AES analysis
platform: the Pentium II provides (twice) larger register space due to the added MMX
technology, and many new MMX-specific commands. Compared to the Pentium Pro,
the Pentium II is also easier to obtain at the current stage, since Pentium Pro has been
out of the manufacturing for a while. On the other hand, the Pentium II was preferred
by the authors to the Pentium III since the latter is somewhat too new and controversial
due to the privacy issues.

Another reason to choose Pentium II was that as the successor of the NIST AES
analysis platform, implementing the AES candidates on the Pentium II could provide
some insights on how generally suitable are the candidates, some of which were specif-
ically optimized for the Pentium Pro, on future processors having features unpredicted
by algorithm designers. While this is not as crucial as withstanding the “future attacks”,
it still gives some ideas about the possible longevity of the cipher. (We clearly would
not want the AES in20 years to have the role the 3DES has today!)

As shown in [Lip98], the MMX technology can seriously speed up IDEA ([LM90],
[LMM94]), one of the believably most secure block ciphers with 64-bit block size. As
stated in [Lip98], this can be done since IDEA has its key attributes similar to those
of multimedia applications, for which the MMX technology was originally created. An
open question posed in [Lip98] was how much would the MMX technology help imple-
menting other ciphers, including the AES candidates. In the following we will partially
answer to that question, showing that also some ciphers using only “simple” operations
can greatly benefit from the added MMX technology. A short overview of Pentium II
that is necessary for implementers and for cryptographers who design ciphers optimized
for this platform is given in Appendix A. We refer for Intel manuals for a more complete
overview.

3 Implementation Considerations

Several papers (including, in particular, [Lip99,SKW+99a]) have compared AES can-
didates speed, but since the implementations quoted in them are often incomparable (or
based on pure estimations), one cannot make direct conclusions about the efficiency of
these algorithms based on the published papers. Incomparability stems from the differ-
ent implementation assumptions, API’s, hardware (processors) and software (compil-
ers) platforms used by implementers. Even more, some of the numbers there correspond
to the “show-case” (as opposed to practically applicable) implementations; including
the bizarre case that one candidate was claimed to be the fastest on its inventors laptop
under some suitable conditions.

As another example of the unsuitability of some “show-case” implementations, the
fastest implementation of Twofish [SKW+99b] uses self-modifying code and therefore
cannot be used in a number of applications, while Brian Gladman’s implementations of

3

AES candidates [Gla99] use a number of key-specific static variables instead of allo-
cating a register to address them, therefore effectively freeing some registers for other
uses. Especially in the case of the Pentium family, where the number of available reg-
isters is very restricted, such implementations may result in a huge speed up. On the
other hand, Gladman’s implementations cannot be used several applications, including
multithreaded programs and SMP (symmetric multi-processing) systems.

Most of the security customers need however speed numbers applicable in whatever
product they use in whatever environment in runs (for example, in a Linux kernel-
supported IPSEC implementation, secure login or multithreaded access to encrypted
storage arrays). For users it is necessary to know in what environment the measured
speed numbers were obtained, to be able to calculate the possible efficiency of the
ciphers in their own environments. Additionally, full specification is important for other
implementers to be able to compare their implementations with ours. Hence, apart from
providing “clean” implementations under some reasonable public assumptions, we shall
also next fully specify these assumptions:

– We do not use self-modifying code (“code compilation” [SKW+99b]) since it
makes the implementation inapplicable in a number of situations, e.g., in operation-
system kernel and ROM-based applications.

– We additionally decided not to use key-specific static areas since then the imple-
mentation could not be used, e.g., in SMP-capable systems and multithreaded pro-
grams.

– We decided to maximally use the MMX technology since it should not be forbidden
in any reasonable modern environment. (While using self-modifying code and key-
specific static areas is generally considered to be a bad programming practice.)

– We decided to use exactly the same API (specified later in Section 3.1) in all our
implementations.

– A number of well-understood assumptions that 1) improve the speed and can be
easily followed by implementers or 2) are essential to even be able to measure the
speed:
• All codes and data are correctly aligned.
• Input and output texts and codes are preloaded to L1 cache in the possible

extent to reduce the number of cache misses.
• Simplicity of code: we tried to reduce time spent during writing and optimiz-

ing the code. In particular, all our implementations use highly optimized but
round-number independent round macros. (Hence, our results could be slightly
bettered if every round would optimized separately to avoid, e.g., delays in
fetching stage.)

3.1 API

Since a different API can be influence the speed of an implementation severely, we also
decided to fully specify the API used by us to make for the other implementers easier
to compare their implementations to the ours. We felt that this is necessary, since AES
candidate implementations reported in [Lip99] vary greatly in their API’s.

4

void xxKS(char *master, uint32 bitLen, char *eKey);
void xxEnc(char *inBlk, uint32 lenBlk, char *eKey,

char *outBlk);
void xxDec(char *inBlk, uint32 lenBlk, char *eKey,

char *outBlk);

where

xx is algorithm name (e.g.,Rijndael).
xxKS is key scheduling subroutine.
xxEnc is encryption subroutine that encryptslenBlk blocks of plaintext starting from the

addressinBlk to the ciphertext locationoutBlk , by using extended keyeKey , in ECB
block cipher mode.

xxDec is decryption subroutine with the same input conventions asxxEnc .
uint32 is the type of32-bit unsigned integers (in the case of Pentium II, equal tounsigned

long in the case of most compilers).
master is pointer to the master key bits.
bitLen is the bit length of a master key.
eKey is pointer to subkeys and other initialization data, used later by encryption and decryption.
inBlk is pointer to input texts to be encrypted in the case ofxxEnc and to be decrypted in the

case ofxxDec .
outBlk is pointer to the corresponding output texts.
lenBlk is number of blocks to be encrypted or decrypted.

Fig. 1.Specification of our API.

Note that our API, depicted in Figure 1, is essentially equivalent to the API’s used
in most of the commercial applications, specifying only those inputs and outputs to the
algorithms that are really needed by the algorithms. (Names of the subroutines and their
parameters of course do not affect the speed, of course.) Our API was fixed for the key
length of128-bits due to the feeling that at the time when greater key sizes become
necessary, our implementation platform would already be a history.

Here, the key schedule and decryption subroutines are specified only for complete-
ness. Since in the current paper we are not interested in the optimization of these sub-
routines, we almost do not mention decryption and key schedules hereafter.

3.2 How to Measure a Number of Cycles

Different time measurement methods may change the speed numbers quite dramati-
cally. As in the case of the API’s, we decided to use one, sensible published andfully
specifiedconvention (specified in Figure 2) for all the implementations. (Note that this
wrapping corresponds almost exactly to the method specified in [Fog00], to which the
reader is referred for a throughout explanation of the method.) The inputs and key of
the cipher are generated randomly before the measurement begins, to prevent “opti-
mization” for specific class of keys. The input variablelenBlk was chosen to be equal
to 8000 so that the input and output texts would not fit in the L1 cache. Also,time is
a work area of typeuint32 , used in later calculations.

5

movd mm0, dword ptr [time]; /* warm cache and set MMX state*/
xor eax, eax;
cpuid; /* serialize instructions*/
rdtsc; /* read time-stamp counter*/
mov dword ptr [time], eax; /* save counter*/
xor eax, eax;
cpuid; /* serialize instructions*/
/* xxEnc() or xxDec() */
xor eax, eax;
cpuid; /* serialize instructions*/
rdtsc; /* read time-stamp counter*/
sub dword ptr [time], eax; /* compute the difference*/
emms; /* empty MMX state */

Note thattime is a4 bytes work area.

Fig. 2.Time measurement code

/* push all used registers*/
cmp dword ptr [lenBlk], 0;
jz L1;
align 16;

L0:
dec dword ptr [lenBlk];
jnz L0;

L1:
/* pop these registers once more*/

Fig. 3.Null function

Note that this method has some overhead, due to both high latency of therdtsc
instructions and also the overhead caused by looping instructions likejnz which are
not formally part of the cipher itself. (Looping instructions can be seen as a part of
the block cipher mode, however.) We measure this overhead by using the null function
shown in Fig. 3 obtaining a valuenulltime , and then we subtract it from the value of
time obtained by measuring the speeds of different encryption/decryption procedures.
Finally, this result is divided by the number of blocks encrypted. Intuitively, by using
this method we obtain the number of cycles corresponding to unrolled implementation
of the block cipher, or to the implementation where we only care about the time en-
crypting one block takes without adding any extra overhead. (Note that the subtracted
overhead number was equal to≈ 6 in the casen = 8000. One could easily add this
number to those presented later to get the number of cycleswith overhead.)

Chosen time measurement method is also reasonable in practice: when the value
of lenBlk was chosen to be different, for most of the implementations (including
the implementation of null cipher), the execution times increased by almost the same
constant. Hence, the null cipher proved experimentally to be well-defined.

6

Cipher Mbits/s on a 450
MHz Pentium II

Cycles per
block

Best previous resultSpeedup

Null cipher — 6 — —
RC6 258 Mbits/s 223 243 [Riv98] 8%
Rijndael 243 Mbits/s 237 320 [DR98] 26%
Twofish 204 Mbits/s 282 315 [SKW+99b] 11%
MARS 188 Mbits/s 306 390 [BCD+98] 22%

Table 1.Performance in clock cycles per block of output of four AES finalists. (Only encryption
considered)

Finally, we did a loop of500 times over the described measurements and then chose
the smallest number for every cipher, since that corresponds most likely to the case
where most of the data and code are in L1 cache and the branch prediction works suc-
cessfully: i.e., to the bulk encryption speed of the cipher itself.

4 Implementation Results

From the five AES finalists, one (Serpent) is regarded as a very conservative design
but at the same time also being clearly slower than the other AES finalists. Rest of the
finalists have comparable timings on most of the modern computer platforms, where
one of the ciphers is the fastest in one platform, and another one in another platform.
Since also on the Pentium II processor, Serpent seems to be very slow by the published
data, we decided postpone its implementation to the future and concentrate on the fast
ciphers.

Timings, obtained by measuring the speed of implementations by following pre-
viously specified procedures are summarized in Table 11. The numbers in the middle
columns show how many cycles it takes to encrypt one128-bit block by using the cho-
sen cipher with a128-bit key. These results indicate that the chosen four AES finalists
are extremely fast. For comparison, the standard hash algorithm SHA-1hashesa 512-
bit block in 837 cycles (i.e.,13.1 cycles per byte) and DES and 3DES encrypt a64-bit
block respectively in340 and928 cycles (resp.,42.5 and116 cycles per byte) [PRB98],
while RC6 and Rijndael respectively encrypt a128-bit block in 223 and 237 cycles
(resp.,13.9 and14.8 cycles per byte). However, note that the cited timings in [PRB98]
were obtained on a plain Pentium and therefore could most probably be improved on
the Pentium II.

Our results seem to indicate, that the speed difference between different ciphers is
less than expected: as before, RC6 is still the fastest cipher on the Pentium II, but the
difference between it and Rijndael has decreased seriously. Hence we hesitate to say
that RC6 is the fastest cipher. However, based on the cited results, we can classify the
ciphers to two groups: blastingly fast ciphers RC6 and Rijndael and somewhat slower,
but still very fast ciphers Twofish and MARS.

1 We also started to code the decryption routines, finishing RC6 decryption (209 cycles per
block) and Twofish decryption (276 cycles per block).

7

However, one has to keep in mind that RC6 and MARS have design features that
make them specifically efficient on the Pentium Pro (and its successors), while their
performance seriously degrades on other processors [Lip99,SKW+99a]. This is due to
the use of complex instructions (32-bit multiplication and data-dependent rotation) that
are cheap on the P6 family (Pentium Pro, Pentium II, Celeron, Xeon and Pentium III)
but very expensive on most of the other platforms. Interestingly, also the next generation
Pentium processor (code-named “Willamette”, [Int00]) has latency10 multiplication
and latency2 or 4 shifts, as compared to latency4 multiplication and latency1 shifts on
the P6 family [Int00, Section 4.1.3]. Hence, RC6 and MARS would considerably slow
down on the Willamette, the next generation Pentium family processor. On the other
hand, Rijndael and Twofish are based on simple operations, and run equally well on
all platforms. The speed ratio between Rijndael and Twofish seems be remainalmost
the same on the other platforms [Lip99] (namely, Rijndael being5 . . . 25% faster than
Twofish).

Note that the speed up percents in Table 1 correspond to the achieved speed ups
compared to the fastest “clean” implementations (i.e., those not using key-specific static
data or self-modifying code). However, these percents do not always mean that our
implementation techniques were exactly as much better. For example, the best previous
implementation of Rijndael was done for the plain Pentium, but not for the Pentium Pro:
a factor that may have negatively affected its performance. The best previous “clean”
implementation of MARS was written in C, and therefore had also a relatively slow
performance. However, our own C implementation of MARS is clearly faster than the
one given in Table 1. In the case of Rijndael, most of the acceleration Rijndael is due
to the efficient use MMX technology. In general, speed up comes mainly from better
optimization (elaborated tradeoff between processor operating stages) and full usage of
the Pentium II possibilities (i.e., the MMX technology).

To further clarify how does the Pentium II architecture impact the speed, Table 2
shows the detailed information of our implementations in encryption mode in the micro-
operation level. Usage of the table is simple. For example, in the intersection point of
“@round” row and “port01” column in TwofishEnc table one would find19. That
means that there are19 µoperations in the round function ofTwofishEnc which will
be executed on port0 or port1.

Interestingly, our implementations of MARS, Rijndael and Twofish all require ap-
proximately the same number ofµoperations, while RC6 is about two times “better”
in this category. On the other hand, RC6 is also the worst cipher to parallelize: while
in Rijndael, more than2.5 µoperations are executed per a cycle, RC6 can only mildly
use the super-scalar parallelism of Pentium II. More cipher-specific comments will be
given in the next.

5 Cipher-Specific Comments

5.1 MARS

In the case of MARS [BCD+98], the speed difference between a carefully optimized
C implementation (using a recent snapshot of thegcc compiler) and an optimized as-
sembly language implementation is only about11% on the Pentium II. The speedup

8

port 0 port 1 port 01port 2 port 3 port 4 total

MARS encryption (1.87 µops/cycle)
prewhitening 5 8 13
forward mixing 16 77 32 125
@core (×16) 6 9 3 18
backward mixing 16 85 32 125
postwhitening 1 8 4 4 4 21
total 128 1 319 124 4 4 572

RC6 encryption (1.47 µops/cycle)
prewhitening 2 7 9
@round (×20) 8 5 2 15
postwhitening 1 4 5 5 5 20
total 160 1 106 52 5 5 329

Rijndael encryption (2.54 µops/cycle)
whitening 1 8 6 15
@round (×9) 4 1 34 19 58
last round 4 3 31 20 3 3 64
total 40 13 345 197 3 3 601

Twofish encryption (2.11 µops/cycle)
prewhitening 5 8 13
first round 5 19 10 34
@round (×15) 6 19 10 35
postwhitening 2 1 8 4 4 4 23
total 97 1 317 172 4 4 595

Table 2.Number ofµoperations in our implementations

comes mainly from a slightly more efficient allocation of the integer registers and some
(minimal) usage of the MMX instructions in the assembly implementation. However,
the MMX technology is only moderately useful for MARS, since the complex instruc-
tions performed in MARS (i.e., 32-bit multiplication, data-dependent rotation and S-
box lookups) are not available for the MMX registers. Additionally, due to the high
data-dependency there is very limited freedom in meaningfully rescheduling the in-
structions in MARS, which also means that one cannot avoid all the delays on all the
processor operating stages.

Another drawback is that during MARS encryption, some execution ports are con-
siderably more overloaded than others. Namely, more than78% ofµoperations go either
to port0 or 1. The most overloaded is port0, since128 µoperations go only to this port
— including16 multiplications and extensively used rotations.

5.2 RC6

From implementers point of view, problems arising when optimizing an RC6 imple-
mentation are similar to those arising when coding MARS in many aspects: both ci-
phers rely on the same complex instructions, have long critical paths and overloaded

9

port 0. However, since RC6 uses multiplications even more extensively, it is even less
parallelizable. Table 2 shows that our implementation includes160 port 0 µoperations,
which includes40 multiplications with latency4.

RC6 is a very Pentium II-friendly cipher, and it is very easy to code it even in the
assembly language. It can also be very efficiently implemented in C: the speed differ-
ence between a C implementation and an assembly implementation is about18%. (The
difference is bigger than in the case of MARS sincegcc , the test compiler, performs
very poorly in translating the quadratic formulas of typex · (2x+ 1) to the Pentium II
assembly language.) It is straightforward to obtain an optimized assembly language
implementation from the C implementation: one does not have many possibilities to
reschedule the code.

5.3 Rijndael

As opposed to MARS and RC6, Rijndael [DR98] is not C-friendly (at least notgcc -
friendly) in the sense that assembly implementation is about44% slower thangcc -
implementation of the same cipher. It is however mainly due to the inefficiency of the
gcc compiler: our implementation of Rijndael makes very heavy use of the MMX
technology, but also of 8-bit instructions provided by Pentium family. However,gcc
cannot efficiently use either of these.

Rijndael can effectively use the MMX since Rijndael is based only on most simple
imaginable operations (load , xor), all of which are supported by the MMX technol-
ogy. Additionally, since Rijndael has large internal parallelism (at least four-times, but
partially up to16-times parallelism!), there is a large number of possibilities to resched-
ule its code. Our implementation was obtained by doing so in a way that all the delays
in the different stages of the Pentium II operation would be minimized. The final result
is very impressive for the Pentium II: it executes2.54 µoperations per a cycle.

Not the last factor that makes Rijndael suitable for the Pentium II is the fact that
almost exactly one third of theµoperations in our implementation of Rijndael go to
port 2, while the remaining2/3 of µoperations go to ports0 and1. Due to this and
parallelism we get that during the Rijndael encryption3 µoperations could be executed
in parallel almost all the time. However, this (not to mention other aspects like decoding
and fetching delays) also makes20 cycles per round a lower bound for Rijndael and
shows that our result may be very close to the optimal one. To facilitate more efficient
implementations, the Pentium II should feature three ALUs, two concurrent memory
access ports and also more decoders and retirement units: features that are not cipher-
specific and would improve the speed of most of the applications.

Finally, we measured the timings ofr-round Rijndael for variabler without any
additional fine-tuning: those implementations are unoptimized since they use the same
round macros as the10-round Rijndael without any additional effort to optimize them
to reduce, say, fetching delays. In particular it turned out that8-round Rijndael (essen-
tially equivalent to the cipher Square [DKR97] from the implementers point of view)
encrypts a block in193 cycles.192-bit Rijndael (12 rounds) took286 cycles, and256-
bit Rijndael (14 rounds)—333 cycles. Note that since12-round Rijndael is very similar
to Crypton [Lim98],286 cycles is also a (hopefully) close approximation for the speed
of latter.

10

5.4 Twofish

Twofish is designed to be well-suited on multiple platforms, including also the Pen-
tium II. From the implementers point of view it resembles Rijndael in many aspects, by
using only simple instructions but also some large-scale components of the latter (e.g.,
MDS, to provide diffusion). Due to the use of low-level instructions, Twofish is also
relatively slow in C compared to the assembly (the difference is about37%).

Main difference for implementers between Rijndael and Twofish is the inclusion
of the Pseudo-Hadamard Transformation that somehow complicates Rijndael’s clear
structure and makes it less parallelizable: while the number ofµoperations in our im-
plementation of Twofish is less than in our implementation of Rijndael, it turned out
to be very difficult to use the MMX technology to optimize Twofish. Hence, Twofish
is only moderately parallelizable, although the parallelism of our implementation (2.11
µoperations per cycle) is relatively good.

6 Conclusion and Work in Progress

We achieved the fastest implementations of four of the AES finalists on the Pentium II
processor, obtaining speedup8% . . . 26% compared to the previously known implemen-
tations. Since all implementations were coded by using the same sensible assumptions,
they provide a more adequate efficiency comparison of the AES finalists than the pre-
vious papers. We demonstrated that MMX can be quite efficiently used to speedup
Rijndael, but is only moderately useful for other ciphers. (However, our implemen-
tations depend on the availability of MMX technology to a lesser or greater extent
and in general do not run on the Pentium Pro.) We provided full specification on our
time-measurement conditions to simplify for the future implementers to compare their
implementations to ours.

Our implementations are not the final: we continue optimizing them. Up-to-date
results will be available at the AES efficiency table [Lip99].

References

[ABK98] Ross Anderson, Eli Biham, and Lars Knudsen. Serpent: A Flexible Block Cipher
With Maximum Assurance. InThe First Advanced Encryption Standard Candidate
Conference, Ventura, California, USA, 20–22 August 1998.

[BCD+98] Carolynn Burwick, Don Coppersmith, Edward D’Avignon, Rosario Gennaro,
Shai Halevi, Charanjit Jutla, Stephen M. Matyas Jr., Luke O’Connor, Moham-
mad Peyravian, David Safford, and Nevenko Zunic. MARS — A Candi-
date Cipher for AES. Original paper and a tweak to it are available from
http://www.research.ibm.com/security/mars.html , June 1998.

[DKR97] Joan Daemen, Lars Knudsen, and Vincent Rijmen. The Block Cipher Square. In
Eli Biham, editor,Fast Software Encryption ’97, volume 1267 ofLecture Notes in
Computer Science, pages 149–165, Haifa, Israel, January 1997. Springer-Verlag.

[DR98] Joan Daemen and Vincent Rijmen. The Block Cipher Rijndael. InThird Smart Card
Research and Advanced Applications Conference Proceedings, 1998. To appear.

11

[FIP77] FIPS. Data Encryption Standard. Technical report, U.S. Department of Com-
merce/National Bureau of Standards, National Technical Information Service,
Springfield, Virginia, 1977. FIPS 46.

[Fog00] Agner Fog. How to Optimize for the Pentium Microprocessors. Available from
http://www.agner.com/assem/ , 11 March 2000.

[Gla99] Brian Gladman. AES algorithm efficiency. Unpublished. Information available
from http://www.btinternet.com/˜brian.gladman/ cryptogra-
phy technology/ , January 1999.

[Int99] Intel. Intel Architecture Optimization. Reference Manual, 1999. Order Number
245127-001.

[Int00] Intel. Willamette Processor Software Developer’s Guide, February 2000. Order
Number 245355-001.

[Lim98] Chae Hoon Lim. Specification and Analysis of CRYPTON Version 1.0.
Unpublished. Available fromhttp://crypt.future.co.kr/˜chlim/
pub/cryptonv10.ps , 22 December 1998.

[Lip98] Helger Lipmaa. IDEA: A cipher for multimedia architectures? In Stafford Tavares
and Henk Meijer, editors,Selected Areas in Cryptography ’98, volume 1556 ofLec-
ture Notes in Computer Science, pages 248–263, Kingston, Canada, 17–18 August
1998. Springer-Verlag.

[Lip99] Helger Lipmaa. AES candidates: A survey of implementations. An on-line table. In-
formation available fromhttp://home.cyber.ee/helger/aes/ , January
1999.

[LM90] Xuejia Lai and James Massey. A proposal for a new block encryption standard. In
I. B. Damg̊ard, editor,Advances in Cryptology — EUROCRYPT ’90, volume 473
of Lecture Notes in Computer Science, pages 389–404. Springer-Verlag, 1991, 21–
24 May 1990.

[LMM94] Xuejia Lai, James L. Massey, and Sean Murphy. Markov ciphers and differential
cryptanalysis. In D. W. Davies, editor,Advances on Cryptology — EUROCRYPT
’91, volume 547 ofLecture Notes in Computer Science, pages 17–38, Brighton,
UK, April 1994. Springer-Verlag.

[PRB98] Bart Preneel, Vincent Rijmen, and Antoon Bosselaers. Recent developments in the
design of conventional algorithms. In B. Preneel, R. Govaerts, and J. Vandewalle,
editors,Computer Security and Industrial Cryptography, State of the Art and Evolu-
tion, volume 1528 ofLecture Notes in Computer Science, pages 90–115. Springer-
Verlag, 1998.

[Riv98] Ronald L. Rivest. Futher Notes on RC6. Unpublished. Available from
http://theory.lcs.mit.edu/˜rivest/rc6-notes.txt , 20 June
1998.

[RRSY98] Ronald L. Rivest, Matt J. B. Robshaw, R. Sidney, and Y. L. Yin. The RC6 Block Ci-
pher. Available fromhttp://theory.lcs.mit.edu/˜rivest/rc6.ps ,
June 1998.

[SKW+99a] Bruce Schneier, John Kelsey, Doug Whiting, David Wagner, and Chris Hall. Per-
formance comparison of the AES submissions. Unpublished. Information available
from http://www.counterpane.com/ , January 1999.

[SKW+99b] Bruce Schneier, John Kelsey, Doug Whiting, David Wagner, Chris Hall, and Niels
Ferguson.The Twofish Encryption Algorithm: A 128-Bit Block Cipher. John Wiley
& Sons, April 1999. ISBN: 0471353817.

12

A Pentium II for Cipher Designers and Implementers

A.1 MMX Technology

The Pentium II has8 integer (including stack pointer) and8 new MMX registers; the
latter were not present in the Pentium Pro. While there is a great number of opera-
tions available on the integer registers, MMX registers are much more “RISCy”: only a
few instructions affect them, including move, Boolean operations,16-bit arithmetic and
shifts. Available set of instructions does not include several operations used in the mod-
ern block cipher design, including rotation and32-bit multiplication. On the other hand,
the MMX technology provides64-bit versions of Boolean operations and data moves
(i.e., the simplest possible operations), and also parallel4-way addition and multiplica-
tion of 16-bit data.16-bit multiplication is currently used in a very few ciphers, but as
shown in [Lip98], ciphers that base their security on extensive use of16-bit multiplica-
tion can be speed up considerably if using the MMX technology.

Despite of MMX’s attractiveness, at the current state of the affairs many C compilers
(for example,gcc , the standard compiler for Linux machines) do not yet produce MMX
code. Hence, for the Pentium II the assembly implementations are potentially more
efficient than C-language implementations. Partially by this reason, many designers
and implementers of AES candidates seem not to know about MMX at all.

A.2 Processor stages.

The Pentium II processor (as other processors in the P6 family) operates in several
stages. At first the instructions are fetched from the main memory and then broken
down (decoded) intoµoperations (simple instructions consist of only oneµoperation,
while complex instruction have moreµoperations). Thereafter, theµoperations go via
a short queue to the register allocation table that allows register renaming. After that,
instructions go to reorder buffer that enables out-of-order execution. There it stays un-
til the operands it needs are available. Ready-for-executionµoperations are sent to the
execution units, and thereafter retired [Int99,Fog00]. During the optimization one has
to count on all different stages of processor operation to find a good tradeoff between
the delays introduced in them. The technicalities presented hereafter could be most in-
teresting for the implementers, but also for the cipher designers who want to create
ciphers optimized for the Pentium II. The most important lesson from the next is that
fixing any processor stages (e.g., decoding), suitable reordering of the instructions can
considerably reduce the delays at this stage. However, the same reordering usually intro-
duces additional delays in some other stages and therefore, code reordering is always
a complicated tradeoff. To achieve really fast implementations, a cipher should have
great internal parallelism that provides many different instruction reordering possibil-
ities, from what the best could be found after possibly exhaustive search. Of course,
one could design a cipher that would have only one possible order of instructions, op-
timized specifically for Pentium II. However, such cipher could slow down severely
if even slightest modifications would be introduced to the processor. Moreover, paral-
lelism is necessary anyways, since already in the near future a processor could have
dozens simultaneously working executing units.

13

Note that our survey is far from being complete, we refer an interested reader to
[Int99,Fog00]. However, during finishing our implementations we found that also the
official Pentium family optimization manual published by Intel [Int99] is far from being
complete. We encountered many problems that could not have been foreseen by using
only the official manuals. Often more accurate (although also not complete) information
about the Pentium II was found in [Fog00]. In several places of our implementations
we performed partial exhaustive search to optimally schedule the instructions. A lot of
experience and luck is necessary in optimizing for Pentium II if one desires to avoid
exhaustive search himself.

In-Order Decoding. Up to 3 instructions can be decoded toµoperations at time, but
only the first decoder can handle instructions with more than oneµoperation. It is rec-
ommended to order the instructions in the4-1-1 sequence, which means that only ev-
ery third instruction could combine in itself of more than oneµoperation [Int99]. By
this reason, algorithms using only “simple operations” can be potentially implemented
faster than those consisting of “complex instructions”. However, in some circuimstances
it would also beneficial to have at least some complex instructions. Namely, if the code
is properly scheduled in a way that exactly (almost) every third instruction has more
than oneµoperation, the decoder will feed the out-of-order execution pool with pace
more than3 µoperations per cycle. Now, if in some later stage less than3 µoperations
per cycle are fed to the execution unit (say due to the delays in fetching), this unit will
not idle waiting for the next instructions from the decoder.

Instruction In-Order Fetching. The Pentium II has16-byte internalifetch bufferswith
the peculiarity that a new buffer is forced to start at beginning of an instruction. The first
instruction of the ifetch buffer will be always decoded by decoder0, even if the previous
instruction was decoded by the same decoder and hence, other decoders would stay
idle. Hence, code reordering and possible use of semantically identical instructions (in
general, but not always,shorter instructions: for example,mov eax,[ebx+0] with
mov eax,[ebx]) with different length could reduce the number of delays introduced
in this stage.

Register In-Order Renaming. Pentium II has40 hardware registers. The software
registers are renamed to hardware registers after a write to (or read from) the software
register. After a register has not been used for a while, it automatically retires and the
next time the same register is used, a new renaming is performed. It is important to know
that only two register renamings can be done during one machine cycle. In particular
this means that generally it is beneficial to gather all instructions operating on some
fixed data chunk together (i.e., to reorder the code in a suitable way). However, it is
extremely difficult to detect and remove delays introduced by this stage, and therefore
this stage may really becomethebottleneck in optimization: subtle modification of code
may introduce long delays in this stage. We refer to [Fog00] for more information.

Out-of-Order Execution. Pentium II has5 execution ports (port 0, port 1, . . . , port
4) that can execute instructions out-of-order. Every port has some specific meaning.

14

Ports0 and1 are ALUs (they can perform arithmetic on operands in registers), port2
performs memory loads. Every memory write counts as twoµoperations, one in port
3 (address calculation) and another one in port4 (memory write). Up to3 ports can
execute an instruction in parallel. There are a number of arithmetic instructions that
can only run in port0 (most importantly, multiplication, rotation and integer register
shifts — instructions that are widely used by some AES finalists), while some other
instructions (most importantly, MMX register shifts) can only run in port1. To obtain
a throughput near to3 µoperations per cycle, the instructions should be distributed so
that no more than2/3 of them are arithmetic, no more than1/3 are memory loads and
no more than1/3 are memory writes: a condition that is very difficult to fulfill in a
practical application.

In-Order Retirement After execution,µoperations will retire in-order. During retire-
ment, hardware registers will be written back to software registers and theµoperations
leave the instruction pool. Since this is done in-order, several delays can occur, e.g., if
speculative out-of-order execution of some earlier long latency instruction is not fin-
ished at the moment of retirement.

15

